Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|
2 |
|
cdlemg12.j |
|
3 |
|
cdlemg12.m |
|
4 |
|
cdlemg12.a |
|
5 |
|
cdlemg12.h |
|
6 |
|
cdlemg12.t |
|
7 |
|
cdlemg12b.r |
|
8 |
|
cdlemg31.n |
|
9 |
|
cdlemg33.o |
|
10 |
|
simp11 |
|
11 |
|
simp12 |
|
12 |
|
simp13 |
|
13 |
|
simp22l |
|
14 |
|
simp21 |
|
15 |
|
simp23l |
|
16 |
|
simp32 |
|
17 |
1 2 3 4 5 6 7 8
|
cdlemg31d |
|
18 |
10 11 12 14 15 16 13 17
|
syl133anc |
|
19 |
13 18
|
jca |
|
20 |
|
simp31l |
|
21 |
|
simp22r |
|
22 |
|
simp31r |
|
23 |
21 22
|
jca |
|
24 |
|
simp33 |
|
25 |
1 2 4 5
|
4atex3 |
|
26 |
10 11 12 19 20 23 24 25
|
syl133anc |
|
27 |
|
idd |
|
28 |
|
idd |
|
29 |
|
simp12l |
|
30 |
|
simp13l |
|
31 |
|
simp21l |
|
32 |
1 2 3 4 5 6 7 8
|
cdlemg31a |
|
33 |
10 29 30 31 15 32
|
syl122anc |
|
34 |
|
simp23r |
|
35 |
1 2 3 4 5 6 7 9
|
cdlemg31a |
|
36 |
10 29 30 31 34 35
|
syl122anc |
|
37 |
|
simp11l |
|
38 |
37
|
hllatd |
|
39 |
|
eqid |
|
40 |
39 4
|
atbase |
|
41 |
13 40
|
syl |
|
42 |
39 2 4
|
hlatjcl |
|
43 |
37 29 31 42
|
syl3anc |
|
44 |
39 4
|
atbase |
|
45 |
21 44
|
syl |
|
46 |
39 1 2
|
latjlej12 |
|
47 |
38 41 43 45 43 46
|
syl122anc |
|
48 |
33 36 47
|
mp2and |
|
49 |
39 2
|
latjidm |
|
50 |
38 43 49
|
syl2anc |
|
51 |
48 50
|
breqtrd |
|
52 |
51
|
adantr |
|
53 |
38
|
adantr |
|
54 |
39 4
|
atbase |
|
55 |
54
|
adantl |
|
56 |
39 2 4
|
hlatjcl |
|
57 |
37 13 21 56
|
syl3anc |
|
58 |
57
|
adantr |
|
59 |
43
|
adantr |
|
60 |
39 1
|
lattr |
|
61 |
53 55 58 59 60
|
syl13anc |
|
62 |
52 61
|
mpan2d |
|
63 |
27 28 62
|
3anim123d |
|
64 |
63
|
anim2d |
|
65 |
64
|
reximdva |
|
66 |
26 65
|
mpd |
|