Metamath Proof Explorer


Theorem cdlemg33b

Description: TODO: Fix comment. (Contributed by NM, 30-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
cdlemg31.n N=P˙v˙Q˙RF
cdlemg33.o O=P˙v˙Q˙RG
Assertion cdlemg33b KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQvRFrA¬r˙WP˙r=Q˙rzA¬z˙WzNzOz˙P˙v

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 cdlemg31.n N=P˙v˙Q˙RF
9 cdlemg33.o O=P˙v˙Q˙RG
10 df-3an zNzOz˙P˙vzNzOz˙P˙v
11 neeq2 N=OzNzO
12 11 anbi2d N=OzNzNzNzO
13 anidm zNzNzN
14 12 13 bitr3di N=OzNzOzN
15 14 anbi1d N=OzNzOz˙P˙vzNz˙P˙v
16 10 15 bitrid N=OzNzOz˙P˙vzNz˙P˙v
17 16 anbi2d N=O¬z˙WzNzOz˙P˙v¬z˙WzNz˙P˙v
18 17 rexbidv N=OzA¬z˙WzNzOz˙P˙vzA¬z˙WzNz˙P˙v
19 simpl1 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQvRFrA¬r˙WP˙r=Q˙rNOKHLWHPA¬P˙WQA¬Q˙W
20 simpl2 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQvRFrA¬r˙WP˙r=Q˙rNOvAv˙WNAOAFTGT
21 simpl31 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQvRFrA¬r˙WP˙r=Q˙rNOPQ
22 simpr KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQvRFrA¬r˙WP˙r=Q˙rNONO
23 21 22 jca KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQvRFrA¬r˙WP˙r=Q˙rNOPQNO
24 simpl32 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQvRFrA¬r˙WP˙r=Q˙rNOvRF
25 simpl33 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQvRFrA¬r˙WP˙r=Q˙rNOrA¬r˙WP˙r=Q˙r
26 1 2 3 4 5 6 7 8 9 cdlemg33a KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rzA¬z˙WzNzOz˙P˙v
27 19 20 23 24 25 26 syl113anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQvRFrA¬r˙WP˙r=Q˙rNOzA¬z˙WzNzOz˙P˙v
28 simp21 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQvRFrA¬r˙WP˙r=Q˙rvAv˙W
29 simp22l KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQvRFrA¬r˙WP˙r=Q˙rNA
30 simp23l KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQvRFrA¬r˙WP˙r=Q˙rFT
31 28 29 30 3jca KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQvRFrA¬r˙WP˙r=Q˙rvAv˙WNAFT
32 1 2 3 4 5 6 7 8 cdlemg33b0 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rzA¬z˙WzNz˙P˙v
33 31 32 syld3an2 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQvRFrA¬r˙WP˙r=Q˙rzA¬z˙WzNz˙P˙v
34 18 27 33 pm2.61ne KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQvRFrA¬r˙WP˙r=Q˙rzA¬z˙WzNzOz˙P˙v