Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|- .<_ = ( le ` K ) |
2 |
|
cdlemg12.j |
|- .\/ = ( join ` K ) |
3 |
|
cdlemg12.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdlemg12.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemg12.h |
|- H = ( LHyp ` K ) |
6 |
|
cdlemg12.t |
|- T = ( ( LTrn ` K ) ` W ) |
7 |
|
cdlemg12b.r |
|- R = ( ( trL ` K ) ` W ) |
8 |
|
cdlemg31.n |
|- N = ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) ) |
9 |
|
cdlemg33.o |
|- O = ( ( P .\/ v ) ./\ ( Q .\/ ( R ` G ) ) ) |
10 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
11 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
12 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
13 |
|
simp22l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> N e. A ) |
14 |
|
simp21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( v e. A /\ v .<_ W ) ) |
15 |
|
simp23l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> F e. T ) |
16 |
|
simp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> v =/= ( R ` F ) ) |
17 |
1 2 3 4 5 6 7 8
|
cdlemg31d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) -> -. N .<_ W ) |
18 |
10 11 12 14 15 16 13 17
|
syl133anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> -. N .<_ W ) |
19 |
13 18
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( N e. A /\ -. N .<_ W ) ) |
20 |
|
simp31l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> P =/= Q ) |
21 |
|
simp22r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> O e. A ) |
22 |
|
simp31r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> N =/= O ) |
23 |
21 22
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( O e. A /\ N =/= O ) ) |
24 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) |
25 |
1 2 4 5
|
4atex3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( P =/= Q /\ ( O e. A /\ N =/= O ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. z e. A ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( N .\/ O ) ) ) ) |
26 |
10 11 12 19 20 23 24 25
|
syl133anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. z e. A ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( N .\/ O ) ) ) ) |
27 |
|
idd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ z e. A ) -> ( z =/= N -> z =/= N ) ) |
28 |
|
idd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ z e. A ) -> ( z =/= O -> z =/= O ) ) |
29 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> P e. A ) |
30 |
|
simp13l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> Q e. A ) |
31 |
|
simp21l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> v e. A ) |
32 |
1 2 3 4 5 6 7 8
|
cdlemg31a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A ) /\ ( v e. A /\ F e. T ) ) -> N .<_ ( P .\/ v ) ) |
33 |
10 29 30 31 15 32
|
syl122anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> N .<_ ( P .\/ v ) ) |
34 |
|
simp23r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> G e. T ) |
35 |
1 2 3 4 5 6 7 9
|
cdlemg31a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A ) /\ ( v e. A /\ G e. T ) ) -> O .<_ ( P .\/ v ) ) |
36 |
10 29 30 31 34 35
|
syl122anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> O .<_ ( P .\/ v ) ) |
37 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> K e. HL ) |
38 |
37
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> K e. Lat ) |
39 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
40 |
39 4
|
atbase |
|- ( N e. A -> N e. ( Base ` K ) ) |
41 |
13 40
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> N e. ( Base ` K ) ) |
42 |
39 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ v e. A ) -> ( P .\/ v ) e. ( Base ` K ) ) |
43 |
37 29 31 42
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( P .\/ v ) e. ( Base ` K ) ) |
44 |
39 4
|
atbase |
|- ( O e. A -> O e. ( Base ` K ) ) |
45 |
21 44
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> O e. ( Base ` K ) ) |
46 |
39 1 2
|
latjlej12 |
|- ( ( K e. Lat /\ ( N e. ( Base ` K ) /\ ( P .\/ v ) e. ( Base ` K ) ) /\ ( O e. ( Base ` K ) /\ ( P .\/ v ) e. ( Base ` K ) ) ) -> ( ( N .<_ ( P .\/ v ) /\ O .<_ ( P .\/ v ) ) -> ( N .\/ O ) .<_ ( ( P .\/ v ) .\/ ( P .\/ v ) ) ) ) |
47 |
38 41 43 45 43 46
|
syl122anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( N .<_ ( P .\/ v ) /\ O .<_ ( P .\/ v ) ) -> ( N .\/ O ) .<_ ( ( P .\/ v ) .\/ ( P .\/ v ) ) ) ) |
48 |
33 36 47
|
mp2and |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( N .\/ O ) .<_ ( ( P .\/ v ) .\/ ( P .\/ v ) ) ) |
49 |
39 2
|
latjidm |
|- ( ( K e. Lat /\ ( P .\/ v ) e. ( Base ` K ) ) -> ( ( P .\/ v ) .\/ ( P .\/ v ) ) = ( P .\/ v ) ) |
50 |
38 43 49
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( P .\/ v ) .\/ ( P .\/ v ) ) = ( P .\/ v ) ) |
51 |
48 50
|
breqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( N .\/ O ) .<_ ( P .\/ v ) ) |
52 |
51
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ z e. A ) -> ( N .\/ O ) .<_ ( P .\/ v ) ) |
53 |
38
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ z e. A ) -> K e. Lat ) |
54 |
39 4
|
atbase |
|- ( z e. A -> z e. ( Base ` K ) ) |
55 |
54
|
adantl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ z e. A ) -> z e. ( Base ` K ) ) |
56 |
39 2 4
|
hlatjcl |
|- ( ( K e. HL /\ N e. A /\ O e. A ) -> ( N .\/ O ) e. ( Base ` K ) ) |
57 |
37 13 21 56
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( N .\/ O ) e. ( Base ` K ) ) |
58 |
57
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ z e. A ) -> ( N .\/ O ) e. ( Base ` K ) ) |
59 |
43
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ z e. A ) -> ( P .\/ v ) e. ( Base ` K ) ) |
60 |
39 1
|
lattr |
|- ( ( K e. Lat /\ ( z e. ( Base ` K ) /\ ( N .\/ O ) e. ( Base ` K ) /\ ( P .\/ v ) e. ( Base ` K ) ) ) -> ( ( z .<_ ( N .\/ O ) /\ ( N .\/ O ) .<_ ( P .\/ v ) ) -> z .<_ ( P .\/ v ) ) ) |
61 |
53 55 58 59 60
|
syl13anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ z e. A ) -> ( ( z .<_ ( N .\/ O ) /\ ( N .\/ O ) .<_ ( P .\/ v ) ) -> z .<_ ( P .\/ v ) ) ) |
62 |
52 61
|
mpan2d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ z e. A ) -> ( z .<_ ( N .\/ O ) -> z .<_ ( P .\/ v ) ) ) |
63 |
27 28 62
|
3anim123d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ z e. A ) -> ( ( z =/= N /\ z =/= O /\ z .<_ ( N .\/ O ) ) -> ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) ) |
64 |
63
|
anim2d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ z e. A ) -> ( ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( N .\/ O ) ) ) -> ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) ) ) |
65 |
64
|
reximdva |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( E. z e. A ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( N .\/ O ) ) ) -> E. z e. A ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) ) ) |
66 |
26 65
|
mpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P =/= Q /\ N =/= O ) /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. z e. A ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) ) |