Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|- .<_ = ( le ` K ) |
2 |
|
cdlemg12.j |
|- .\/ = ( join ` K ) |
3 |
|
cdlemg12.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdlemg12.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemg12.h |
|- H = ( LHyp ` K ) |
6 |
|
cdlemg12.t |
|- T = ( ( LTrn ` K ) ` W ) |
7 |
|
cdlemg12b.r |
|- R = ( ( trL ` K ) ` W ) |
8 |
|
cdlemg31.n |
|- N = ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) ) |
9 |
|
simp22r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) -> -. Q .<_ W ) |
10 |
9
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> -. Q .<_ W ) |
11 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> ( K e. HL /\ W e. H ) ) |
12 |
|
simp21l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) -> P e. A ) |
13 |
12
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> P e. A ) |
14 |
|
simp22l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) -> Q e. A ) |
15 |
14
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> Q e. A ) |
16 |
|
simp23l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) -> v e. A ) |
17 |
16
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> v e. A ) |
18 |
|
simpl31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> F e. T ) |
19 |
1 2 3 4 5 6 7 8
|
cdlemg31b |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A ) /\ ( v e. A /\ F e. T ) ) -> N .<_ ( Q .\/ ( R ` F ) ) ) |
20 |
11 13 15 17 18 19
|
syl122anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> N .<_ ( Q .\/ ( R ` F ) ) ) |
21 |
|
simpl21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> ( P e. A /\ -. P .<_ W ) ) |
22 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> ( F ` P ) = P ) |
23 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
24 |
1 23 4 5 6 7
|
trl0 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( F e. T /\ ( F ` P ) = P ) ) -> ( R ` F ) = ( 0. ` K ) ) |
25 |
11 21 18 22 24
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> ( R ` F ) = ( 0. ` K ) ) |
26 |
25
|
oveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> ( Q .\/ ( R ` F ) ) = ( Q .\/ ( 0. ` K ) ) ) |
27 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) -> K e. HL ) |
28 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
29 |
27 28
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) -> K e. OL ) |
30 |
29
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> K e. OL ) |
31 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
32 |
31 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
33 |
15 32
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> Q e. ( Base ` K ) ) |
34 |
31 2 23
|
olj01 |
|- ( ( K e. OL /\ Q e. ( Base ` K ) ) -> ( Q .\/ ( 0. ` K ) ) = Q ) |
35 |
30 33 34
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> ( Q .\/ ( 0. ` K ) ) = Q ) |
36 |
26 35
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> ( Q .\/ ( R ` F ) ) = Q ) |
37 |
20 36
|
breqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> N .<_ Q ) |
38 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
39 |
27 38
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) -> K e. AtLat ) |
40 |
39
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> K e. AtLat ) |
41 |
|
simpl33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> N e. A ) |
42 |
1 4
|
atcmp |
|- ( ( K e. AtLat /\ N e. A /\ Q e. A ) -> ( N .<_ Q <-> N = Q ) ) |
43 |
40 41 15 42
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> ( N .<_ Q <-> N = Q ) ) |
44 |
37 43
|
mpbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> N = Q ) |
45 |
44
|
breq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> ( N .<_ W <-> Q .<_ W ) ) |
46 |
10 45
|
mtbird |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> -. N .<_ W ) |
47 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) =/= P ) -> ( K e. HL /\ W e. H ) ) |
48 |
|
simpl21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) =/= P ) -> ( P e. A /\ -. P .<_ W ) ) |
49 |
|
simpl22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) =/= P ) -> ( Q e. A /\ -. Q .<_ W ) ) |
50 |
|
simpl23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) =/= P ) -> ( v e. A /\ v .<_ W ) ) |
51 |
|
simpl31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) =/= P ) -> F e. T ) |
52 |
|
simpl32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) =/= P ) -> v =/= ( R ` F ) ) |
53 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) =/= P ) -> ( F ` P ) =/= P ) |
54 |
|
simpl33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) =/= P ) -> N e. A ) |
55 |
1 2 3 4 5 6 7 8
|
cdlemg31c |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ F e. T ) /\ ( v =/= ( R ` F ) /\ ( F ` P ) =/= P /\ N e. A ) ) -> -. N .<_ W ) |
56 |
47 48 49 50 51 52 53 54 55
|
syl323anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) =/= P ) -> -. N .<_ W ) |
57 |
46 56
|
pm2.61dane |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) -> -. N .<_ W ) |