Metamath Proof Explorer


Theorem cdlemg31d

Description: Eliminate ( FP ) =/= P from cdlemg31c . TODO: Prove directly. TODO: do we need to eliminate ( FP ) =/= P ? It might be better to do this all at once at the end. See also cdlemg29 versus cdlemg28 . (Contributed by NM, 29-May-2013)

Ref Expression
Hypotheses cdlemg12.l
|- .<_ = ( le ` K )
cdlemg12.j
|- .\/ = ( join ` K )
cdlemg12.m
|- ./\ = ( meet ` K )
cdlemg12.a
|- A = ( Atoms ` K )
cdlemg12.h
|- H = ( LHyp ` K )
cdlemg12.t
|- T = ( ( LTrn ` K ) ` W )
cdlemg12b.r
|- R = ( ( trL ` K ) ` W )
cdlemg31.n
|- N = ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) )
Assertion cdlemg31d
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) -> -. N .<_ W )

Proof

Step Hyp Ref Expression
1 cdlemg12.l
 |-  .<_ = ( le ` K )
2 cdlemg12.j
 |-  .\/ = ( join ` K )
3 cdlemg12.m
 |-  ./\ = ( meet ` K )
4 cdlemg12.a
 |-  A = ( Atoms ` K )
5 cdlemg12.h
 |-  H = ( LHyp ` K )
6 cdlemg12.t
 |-  T = ( ( LTrn ` K ) ` W )
7 cdlemg12b.r
 |-  R = ( ( trL ` K ) ` W )
8 cdlemg31.n
 |-  N = ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) )
9 simp22r
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) -> -. Q .<_ W )
10 9 adantr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> -. Q .<_ W )
11 simpl1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> ( K e. HL /\ W e. H ) )
12 simp21l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) -> P e. A )
13 12 adantr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> P e. A )
14 simp22l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) -> Q e. A )
15 14 adantr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> Q e. A )
16 simp23l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) -> v e. A )
17 16 adantr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> v e. A )
18 simpl31
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> F e. T )
19 1 2 3 4 5 6 7 8 cdlemg31b
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A ) /\ ( v e. A /\ F e. T ) ) -> N .<_ ( Q .\/ ( R ` F ) ) )
20 11 13 15 17 18 19 syl122anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> N .<_ ( Q .\/ ( R ` F ) ) )
21 simpl21
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> ( P e. A /\ -. P .<_ W ) )
22 simpr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> ( F ` P ) = P )
23 eqid
 |-  ( 0. ` K ) = ( 0. ` K )
24 1 23 4 5 6 7 trl0
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( F e. T /\ ( F ` P ) = P ) ) -> ( R ` F ) = ( 0. ` K ) )
25 11 21 18 22 24 syl112anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> ( R ` F ) = ( 0. ` K ) )
26 25 oveq2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> ( Q .\/ ( R ` F ) ) = ( Q .\/ ( 0. ` K ) ) )
27 simp1l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) -> K e. HL )
28 hlol
 |-  ( K e. HL -> K e. OL )
29 27 28 syl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) -> K e. OL )
30 29 adantr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> K e. OL )
31 eqid
 |-  ( Base ` K ) = ( Base ` K )
32 31 4 atbase
 |-  ( Q e. A -> Q e. ( Base ` K ) )
33 15 32 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> Q e. ( Base ` K ) )
34 31 2 23 olj01
 |-  ( ( K e. OL /\ Q e. ( Base ` K ) ) -> ( Q .\/ ( 0. ` K ) ) = Q )
35 30 33 34 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> ( Q .\/ ( 0. ` K ) ) = Q )
36 26 35 eqtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> ( Q .\/ ( R ` F ) ) = Q )
37 20 36 breqtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> N .<_ Q )
38 hlatl
 |-  ( K e. HL -> K e. AtLat )
39 27 38 syl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) -> K e. AtLat )
40 39 adantr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> K e. AtLat )
41 simpl33
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> N e. A )
42 1 4 atcmp
 |-  ( ( K e. AtLat /\ N e. A /\ Q e. A ) -> ( N .<_ Q <-> N = Q ) )
43 40 41 15 42 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> ( N .<_ Q <-> N = Q ) )
44 37 43 mpbid
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> N = Q )
45 44 breq1d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> ( N .<_ W <-> Q .<_ W ) )
46 10 45 mtbird
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) = P ) -> -. N .<_ W )
47 simpl1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) =/= P ) -> ( K e. HL /\ W e. H ) )
48 simpl21
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) =/= P ) -> ( P e. A /\ -. P .<_ W ) )
49 simpl22
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) =/= P ) -> ( Q e. A /\ -. Q .<_ W ) )
50 simpl23
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) =/= P ) -> ( v e. A /\ v .<_ W ) )
51 simpl31
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) =/= P ) -> F e. T )
52 simpl32
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) =/= P ) -> v =/= ( R ` F ) )
53 simpr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) =/= P ) -> ( F ` P ) =/= P )
54 simpl33
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) =/= P ) -> N e. A )
55 1 2 3 4 5 6 7 8 cdlemg31c
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ F e. T ) /\ ( v =/= ( R ` F ) /\ ( F ` P ) =/= P /\ N e. A ) ) -> -. N .<_ W )
56 47 48 49 50 51 52 53 54 55 syl323anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) /\ ( F ` P ) =/= P ) -> -. N .<_ W )
57 46 56 pm2.61dane
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) /\ N e. A ) ) -> -. N .<_ W )