| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdlemg12.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | cdlemg12.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | cdlemg12.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 |  | cdlemg12.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 6 |  | cdlemg12.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | cdlemg12b.r | ⊢ 𝑅  =  ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | cdlemg31.n | ⊢ 𝑁  =  ( ( 𝑃  ∨  𝑣 )  ∧  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) ) | 
						
							| 9 |  | simp22r | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  →  ¬  𝑄  ≤  𝑊 ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ¬  𝑄  ≤  𝑊 ) | 
						
							| 11 |  | simpl1 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 12 |  | simp21l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝑃  ∈  𝐴 ) | 
						
							| 14 |  | simp22l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝑄  ∈  𝐴 ) | 
						
							| 16 |  | simp23l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  →  𝑣  ∈  𝐴 ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝑣  ∈  𝐴 ) | 
						
							| 18 |  | simpl31 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝐹  ∈  𝑇 ) | 
						
							| 19 | 1 2 3 4 5 6 7 8 | cdlemg31b | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝐹  ∈  𝑇 ) )  →  𝑁  ≤  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) ) | 
						
							| 20 | 11 13 15 17 18 19 | syl122anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝑁  ≤  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) ) | 
						
							| 21 |  | simpl21 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) ) | 
						
							| 22 |  | simpr | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝐹 ‘ 𝑃 )  =  𝑃 ) | 
						
							| 23 |  | eqid | ⊢ ( 0. ‘ 𝐾 )  =  ( 0. ‘ 𝐾 ) | 
						
							| 24 | 1 23 4 5 6 7 | trl0 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 ) )  →  ( 𝑅 ‘ 𝐹 )  =  ( 0. ‘ 𝐾 ) ) | 
						
							| 25 | 11 21 18 22 24 | syl112anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑅 ‘ 𝐹 )  =  ( 0. ‘ 𝐾 ) ) | 
						
							| 26 | 25 | oveq2d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  =  ( 𝑄  ∨  ( 0. ‘ 𝐾 ) ) ) | 
						
							| 27 |  | simp1l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  →  𝐾  ∈  HL ) | 
						
							| 28 |  | hlol | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OL ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  →  𝐾  ∈  OL ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝐾  ∈  OL ) | 
						
							| 31 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 32 | 31 4 | atbase | ⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 33 | 15 32 | syl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝑄  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 34 | 31 2 23 | olj01 | ⊢ ( ( 𝐾  ∈  OL  ∧  𝑄  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑄  ∨  ( 0. ‘ 𝐾 ) )  =  𝑄 ) | 
						
							| 35 | 30 33 34 | syl2anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑄  ∨  ( 0. ‘ 𝐾 ) )  =  𝑄 ) | 
						
							| 36 | 26 35 | eqtrd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  =  𝑄 ) | 
						
							| 37 | 20 36 | breqtrd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝑁  ≤  𝑄 ) | 
						
							| 38 |  | hlatl | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  AtLat ) | 
						
							| 39 | 27 38 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  →  𝐾  ∈  AtLat ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝐾  ∈  AtLat ) | 
						
							| 41 |  | simpl33 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝑁  ∈  𝐴 ) | 
						
							| 42 | 1 4 | atcmp | ⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑁  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑁  ≤  𝑄  ↔  𝑁  =  𝑄 ) ) | 
						
							| 43 | 40 41 15 42 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑁  ≤  𝑄  ↔  𝑁  =  𝑄 ) ) | 
						
							| 44 | 37 43 | mpbid | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝑁  =  𝑄 ) | 
						
							| 45 | 44 | breq1d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑁  ≤  𝑊  ↔  𝑄  ≤  𝑊 ) ) | 
						
							| 46 | 10 45 | mtbird | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ¬  𝑁  ≤  𝑊 ) | 
						
							| 47 |  | simpl1 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 48 |  | simpl21 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) ) | 
						
							| 49 |  | simpl22 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) | 
						
							| 50 |  | simpl23 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 )  →  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) ) | 
						
							| 51 |  | simpl31 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 )  →  𝐹  ∈  𝑇 ) | 
						
							| 52 |  | simpl32 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 )  →  𝑣  ≠  ( 𝑅 ‘ 𝐹 ) ) | 
						
							| 53 |  | simpr | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 )  →  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) | 
						
							| 54 |  | simpl33 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 )  →  𝑁  ∈  𝐴 ) | 
						
							| 55 | 1 2 3 4 5 6 7 8 | cdlemg31c | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  →  ¬  𝑁  ≤  𝑊 ) | 
						
							| 56 | 47 48 49 50 51 52 53 54 55 | syl323anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 )  →  ¬  𝑁  ≤  𝑊 ) | 
						
							| 57 | 46 56 | pm2.61dane | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  →  ¬  𝑁  ≤  𝑊 ) |