Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemg12.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdlemg12.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdlemg12.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemg12.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemg12.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemg12b.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemg31.n |
⊢ 𝑁 = ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) |
9 |
|
simp22r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) → ¬ 𝑄 ≤ 𝑊 ) |
10 |
9
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ¬ 𝑄 ≤ 𝑊 ) |
11 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
simp21l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐴 ) |
13 |
12
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝑃 ∈ 𝐴 ) |
14 |
|
simp22l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐴 ) |
15 |
14
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝑄 ∈ 𝐴 ) |
16 |
|
simp23l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) → 𝑣 ∈ 𝐴 ) |
17 |
16
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝑣 ∈ 𝐴 ) |
18 |
|
simpl31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝐹 ∈ 𝑇 ) |
19 |
1 2 3 4 5 6 7 8
|
cdlemg31b |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ) → 𝑁 ≤ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) |
20 |
11 13 15 17 18 19
|
syl122anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝑁 ≤ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) |
21 |
|
simpl21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
22 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝐹 ‘ 𝑃 ) = 𝑃 ) |
23 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
24 |
1 23 4 5 6 7
|
trl0 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) ) → ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) |
25 |
11 21 18 22 24
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) |
26 |
25
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) = ( 𝑄 ∨ ( 0. ‘ 𝐾 ) ) ) |
27 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) → 𝐾 ∈ HL ) |
28 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
29 |
27 28
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) → 𝐾 ∈ OL ) |
30 |
29
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝐾 ∈ OL ) |
31 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
32 |
31 4
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
33 |
15 32
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
34 |
31 2 23
|
olj01 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ∨ ( 0. ‘ 𝐾 ) ) = 𝑄 ) |
35 |
30 33 34
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑄 ∨ ( 0. ‘ 𝐾 ) ) = 𝑄 ) |
36 |
26 35
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) = 𝑄 ) |
37 |
20 36
|
breqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝑁 ≤ 𝑄 ) |
38 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
39 |
27 38
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) → 𝐾 ∈ AtLat ) |
40 |
39
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝐾 ∈ AtLat ) |
41 |
|
simpl33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝑁 ∈ 𝐴 ) |
42 |
1 4
|
atcmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑁 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑁 ≤ 𝑄 ↔ 𝑁 = 𝑄 ) ) |
43 |
40 41 15 42
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑁 ≤ 𝑄 ↔ 𝑁 = 𝑄 ) ) |
44 |
37 43
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝑁 = 𝑄 ) |
45 |
44
|
breq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑁 ≤ 𝑊 ↔ 𝑄 ≤ 𝑊 ) ) |
46 |
10 45
|
mtbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ¬ 𝑁 ≤ 𝑊 ) |
47 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
48 |
|
simpl21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
49 |
|
simpl22 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
50 |
|
simpl23 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) |
51 |
|
simpl31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → 𝐹 ∈ 𝑇 ) |
52 |
|
simpl32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ) |
53 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) |
54 |
|
simpl33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → 𝑁 ∈ 𝐴 ) |
55 |
1 2 3 4 5 6 7 8
|
cdlemg31c |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ 𝑁 ∈ 𝐴 ) ) → ¬ 𝑁 ≤ 𝑊 ) |
56 |
47 48 49 50 51 52 53 54 55
|
syl323anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ¬ 𝑁 ≤ 𝑊 ) |
57 |
46 56
|
pm2.61dane |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑁 ∈ 𝐴 ) ) → ¬ 𝑁 ≤ 𝑊 ) |