Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemg12.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdlemg12.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdlemg12.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemg12.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemg12.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemg12b.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemg31.n |
⊢ 𝑁 = ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) |
9 |
|
cdlemg33.o |
⊢ 𝑂 = ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐺 ) ) ) |
10 |
|
simpl11 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
11 |
|
simpl12 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
12 |
|
simpl13 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
13 |
|
simp23l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → 𝐹 ∈ 𝑇 ) |
14 |
13
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝐹 ∈ 𝑇 ) |
15 |
|
simp23r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → 𝐺 ∈ 𝑇 ) |
16 |
15
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝐺 ∈ 𝑇 ) |
17 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝐹 ‘ 𝑃 ) = 𝑃 ) |
18 |
1 2 3 4 5 6 7
|
cdlemg14f |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑊 ) ) |
19 |
10 11 12 14 16 17 18
|
syl123anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑊 ) ) |
20 |
|
simpl11 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) ∧ ( 𝐺 ‘ 𝑃 ) = 𝑃 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
21 |
|
simpl12 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) ∧ ( 𝐺 ‘ 𝑃 ) = 𝑃 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
22 |
|
simpl13 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) ∧ ( 𝐺 ‘ 𝑃 ) = 𝑃 ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
23 |
13
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) ∧ ( 𝐺 ‘ 𝑃 ) = 𝑃 ) → 𝐹 ∈ 𝑇 ) |
24 |
15
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) ∧ ( 𝐺 ‘ 𝑃 ) = 𝑃 ) → 𝐺 ∈ 𝑇 ) |
25 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) ∧ ( 𝐺 ‘ 𝑃 ) = 𝑃 ) → ( 𝐺 ‘ 𝑃 ) = 𝑃 ) |
26 |
1 2 3 4 5 6 7
|
cdlemg14g |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝐺 ‘ 𝑃 ) = 𝑃 ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑊 ) ) |
27 |
20 21 22 23 24 25 26
|
syl123anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) ∧ ( 𝐺 ‘ 𝑃 ) = 𝑃 ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑊 ) ) |
28 |
|
simpl1 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) |
29 |
|
simpl2 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ) |
30 |
|
simp31l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → 𝑧 ≠ 𝑁 ) |
31 |
30
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ) → 𝑧 ≠ 𝑁 ) |
32 |
|
simp31r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → 𝑧 ≠ 𝑂 ) |
33 |
32
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ) → 𝑧 ≠ 𝑂 ) |
34 |
|
simpl32 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ) → 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ) |
35 |
31 33 34
|
3jca |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ) ) |
36 |
|
simpl33 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) |
37 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ) |
38 |
1 2 3 4 5 6 7 8 9
|
cdlemg28 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑊 ) ) |
39 |
28 29 35 36 37 38
|
syl113anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑊 ) ) |
40 |
19 27 39
|
pm2.61da2ne |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑊 ) ) |