Metamath Proof Explorer


Theorem cdlemg33a

Description: TODO: Fix comment. (Contributed by NM, 29-May-2013)

Ref Expression
Hypotheses cdlemg12.l = ( le ‘ 𝐾 )
cdlemg12.j = ( join ‘ 𝐾 )
cdlemg12.m = ( meet ‘ 𝐾 )
cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemg31.n 𝑁 = ( ( 𝑃 𝑣 ) ( 𝑄 ( 𝑅𝐹 ) ) )
cdlemg33.o 𝑂 = ( ( 𝑃 𝑣 ) ( 𝑄 ( 𝑅𝐺 ) ) )
Assertion cdlemg33a ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑧𝑁𝑧𝑂𝑧 ( 𝑃 𝑣 ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemg12.l = ( le ‘ 𝐾 )
2 cdlemg12.j = ( join ‘ 𝐾 )
3 cdlemg12.m = ( meet ‘ 𝐾 )
4 cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemg31.n 𝑁 = ( ( 𝑃 𝑣 ) ( 𝑄 ( 𝑅𝐹 ) ) )
9 cdlemg33.o 𝑂 = ( ( 𝑃 𝑣 ) ( 𝑄 ( 𝑅𝐺 ) ) )
10 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
11 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
12 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
13 simp22l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑁𝐴 )
14 simp21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑣𝐴𝑣 𝑊 ) )
15 simp23l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝐹𝑇 )
16 simp32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑣 ≠ ( 𝑅𝐹 ) )
17 1 2 3 4 5 6 7 8 cdlemg31d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑣𝐴𝑣 𝑊 ) ) ∧ ( 𝐹𝑇𝑣 ≠ ( 𝑅𝐹 ) ∧ 𝑁𝐴 ) ) → ¬ 𝑁 𝑊 )
18 10 11 12 14 15 16 13 17 syl133anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ¬ 𝑁 𝑊 )
19 13 18 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) )
20 simp31l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑃𝑄 )
21 simp22r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑂𝐴 )
22 simp31r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑁𝑂 )
23 21 22 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑂𝐴𝑁𝑂 ) )
24 simp33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) )
25 1 2 4 5 4atex3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑂𝐴𝑁𝑂 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑧𝑁𝑧𝑂𝑧 ( 𝑁 𝑂 ) ) ) )
26 10 11 12 19 20 23 24 25 syl133anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑧𝑁𝑧𝑂𝑧 ( 𝑁 𝑂 ) ) ) )
27 idd ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑧𝐴 ) → ( 𝑧𝑁𝑧𝑁 ) )
28 idd ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑧𝐴 ) → ( 𝑧𝑂𝑧𝑂 ) )
29 simp12l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑃𝐴 )
30 simp13l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑄𝐴 )
31 simp21l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑣𝐴 )
32 1 2 3 4 5 6 7 8 cdlemg31a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑣𝐴𝐹𝑇 ) ) → 𝑁 ( 𝑃 𝑣 ) )
33 10 29 30 31 15 32 syl122anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑁 ( 𝑃 𝑣 ) )
34 simp23r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝐺𝑇 )
35 1 2 3 4 5 6 7 9 cdlemg31a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑣𝐴𝐺𝑇 ) ) → 𝑂 ( 𝑃 𝑣 ) )
36 10 29 30 31 34 35 syl122anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑂 ( 𝑃 𝑣 ) )
37 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝐾 ∈ HL )
38 37 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝐾 ∈ Lat )
39 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
40 39 4 atbase ( 𝑁𝐴𝑁 ∈ ( Base ‘ 𝐾 ) )
41 13 40 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑁 ∈ ( Base ‘ 𝐾 ) )
42 39 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑣𝐴 ) → ( 𝑃 𝑣 ) ∈ ( Base ‘ 𝐾 ) )
43 37 29 31 42 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑃 𝑣 ) ∈ ( Base ‘ 𝐾 ) )
44 39 4 atbase ( 𝑂𝐴𝑂 ∈ ( Base ‘ 𝐾 ) )
45 21 44 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑂 ∈ ( Base ‘ 𝐾 ) )
46 39 1 2 latjlej12 ( ( 𝐾 ∈ Lat ∧ ( 𝑁 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 𝑣 ) ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑂 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 𝑣 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑁 ( 𝑃 𝑣 ) ∧ 𝑂 ( 𝑃 𝑣 ) ) → ( 𝑁 𝑂 ) ( ( 𝑃 𝑣 ) ( 𝑃 𝑣 ) ) ) )
47 38 41 43 45 43 46 syl122anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝑁 ( 𝑃 𝑣 ) ∧ 𝑂 ( 𝑃 𝑣 ) ) → ( 𝑁 𝑂 ) ( ( 𝑃 𝑣 ) ( 𝑃 𝑣 ) ) ) )
48 33 36 47 mp2and ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑁 𝑂 ) ( ( 𝑃 𝑣 ) ( 𝑃 𝑣 ) ) )
49 39 2 latjidm ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑣 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 𝑣 ) ( 𝑃 𝑣 ) ) = ( 𝑃 𝑣 ) )
50 38 43 49 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝑃 𝑣 ) ( 𝑃 𝑣 ) ) = ( 𝑃 𝑣 ) )
51 48 50 breqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑁 𝑂 ) ( 𝑃 𝑣 ) )
52 51 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑧𝐴 ) → ( 𝑁 𝑂 ) ( 𝑃 𝑣 ) )
53 38 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑧𝐴 ) → 𝐾 ∈ Lat )
54 39 4 atbase ( 𝑧𝐴𝑧 ∈ ( Base ‘ 𝐾 ) )
55 54 adantl ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑧𝐴 ) → 𝑧 ∈ ( Base ‘ 𝐾 ) )
56 39 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑁𝐴𝑂𝐴 ) → ( 𝑁 𝑂 ) ∈ ( Base ‘ 𝐾 ) )
57 37 13 21 56 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑁 𝑂 ) ∈ ( Base ‘ 𝐾 ) )
58 57 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑧𝐴 ) → ( 𝑁 𝑂 ) ∈ ( Base ‘ 𝐾 ) )
59 43 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑧𝐴 ) → ( 𝑃 𝑣 ) ∈ ( Base ‘ 𝐾 ) )
60 39 1 lattr ( ( 𝐾 ∈ Lat ∧ ( 𝑧 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑁 𝑂 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 𝑣 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑧 ( 𝑁 𝑂 ) ∧ ( 𝑁 𝑂 ) ( 𝑃 𝑣 ) ) → 𝑧 ( 𝑃 𝑣 ) ) )
61 53 55 58 59 60 syl13anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑧𝐴 ) → ( ( 𝑧 ( 𝑁 𝑂 ) ∧ ( 𝑁 𝑂 ) ( 𝑃 𝑣 ) ) → 𝑧 ( 𝑃 𝑣 ) ) )
62 52 61 mpan2d ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑧𝐴 ) → ( 𝑧 ( 𝑁 𝑂 ) → 𝑧 ( 𝑃 𝑣 ) ) )
63 27 28 62 3anim123d ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑧𝐴 ) → ( ( 𝑧𝑁𝑧𝑂𝑧 ( 𝑁 𝑂 ) ) → ( 𝑧𝑁𝑧𝑂𝑧 ( 𝑃 𝑣 ) ) ) )
64 63 anim2d ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑧𝐴 ) → ( ( ¬ 𝑧 𝑊 ∧ ( 𝑧𝑁𝑧𝑂𝑧 ( 𝑁 𝑂 ) ) ) → ( ¬ 𝑧 𝑊 ∧ ( 𝑧𝑁𝑧𝑂𝑧 ( 𝑃 𝑣 ) ) ) ) )
65 64 reximdva ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑧𝑁𝑧𝑂𝑧 ( 𝑁 𝑂 ) ) ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑧𝑁𝑧𝑂𝑧 ( 𝑃 𝑣 ) ) ) ) )
66 26 65 mpd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂𝐴 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝑄𝑁𝑂 ) ∧ 𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑧𝑁𝑧𝑂𝑧 ( 𝑃 𝑣 ) ) ) )