Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemg12.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdlemg12.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdlemg12.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemg12.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemg12.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemg12b.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemg31.n |
⊢ 𝑁 = ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) |
9 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ) → 𝐾 ∈ HL ) |
10 |
9
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ) → 𝐾 ∈ Lat ) |
11 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ) → 𝑃 ∈ 𝐴 ) |
12 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ) → 𝑣 ∈ 𝐴 ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
14 |
13 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑣 ) ∈ ( Base ‘ 𝐾 ) ) |
15 |
9 11 12 14
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ) → ( 𝑃 ∨ 𝑣 ) ∈ ( Base ‘ 𝐾 ) ) |
16 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ) → 𝑄 ∈ 𝐴 ) |
17 |
13 4
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
18 |
16 17
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
19 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
20 |
|
simp3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ) → 𝐹 ∈ 𝑇 ) |
21 |
13 5 6 7
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ) |
22 |
19 20 21
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ) → ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ) |
23 |
13 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐾 ) ) |
24 |
10 18 22 23
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ) → ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐾 ) ) |
25 |
13 1 3
|
latmle1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑣 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) ≤ ( 𝑃 ∨ 𝑣 ) ) |
26 |
10 15 24 25
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ) → ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) ≤ ( 𝑃 ∨ 𝑣 ) ) |
27 |
8 26
|
eqbrtrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ) → 𝑁 ≤ ( 𝑃 ∨ 𝑣 ) ) |