| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdlemg12.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | cdlemg12.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | cdlemg12.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 |  | cdlemg12.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 6 |  | cdlemg12.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | cdlemg12b.r | ⊢ 𝑅  =  ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | cdlemg31.n | ⊢ 𝑁  =  ( ( 𝑃  ∨  𝑣 )  ∧  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) ) | 
						
							| 9 |  | simp1l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝐹  ∈  𝑇 ) )  →  𝐾  ∈  HL ) | 
						
							| 10 | 9 | hllatd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝐹  ∈  𝑇 ) )  →  𝐾  ∈  Lat ) | 
						
							| 11 |  | simp2l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝐹  ∈  𝑇 ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 12 |  | simp3l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝐹  ∈  𝑇 ) )  →  𝑣  ∈  𝐴 ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 14 | 13 2 4 | hlatjcl | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  →  ( 𝑃  ∨  𝑣 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 15 | 9 11 12 14 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝐹  ∈  𝑇 ) )  →  ( 𝑃  ∨  𝑣 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 16 |  | simp2r | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝐹  ∈  𝑇 ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 17 | 13 4 | atbase | ⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝐹  ∈  𝑇 ) )  →  𝑄  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 19 |  | simp1 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝐹  ∈  𝑇 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 20 |  | simp3r | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝐹  ∈  𝑇 ) )  →  𝐹  ∈  𝑇 ) | 
						
							| 21 | 13 5 6 7 | trlcl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇 )  →  ( 𝑅 ‘ 𝐹 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 22 | 19 20 21 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝐹  ∈  𝑇 ) )  →  ( 𝑅 ‘ 𝐹 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 23 | 13 2 | latjcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑅 ‘ 𝐹 )  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 24 | 10 18 22 23 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝐹  ∈  𝑇 ) )  →  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 25 | 13 1 3 | latmle1 | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑣 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑣 )  ∧  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) )  ≤  ( 𝑃  ∨  𝑣 ) ) | 
						
							| 26 | 10 15 24 25 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝐹  ∈  𝑇 ) )  →  ( ( 𝑃  ∨  𝑣 )  ∧  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) )  ≤  ( 𝑃  ∨  𝑣 ) ) | 
						
							| 27 | 8 26 | eqbrtrid | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝐹  ∈  𝑇 ) )  →  𝑁  ≤  ( 𝑃  ∨  𝑣 ) ) |