| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdlemg12.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | cdlemg12.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | cdlemg12.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 |  | cdlemg12.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 6 |  | cdlemg12.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | cdlemg12b.r | ⊢ 𝑅  =  ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | cdlemg31.n | ⊢ 𝑁  =  ( ( 𝑃  ∨  𝑣 )  ∧  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) ) | 
						
							| 9 |  | simp11 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 10 |  | simp12 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) ) | 
						
							| 11 |  | simp13 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) | 
						
							| 12 |  | simp22 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑁  ∈  𝐴 ) | 
						
							| 13 |  | simp21l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑣  ∈  𝐴 ) | 
						
							| 14 |  | simp21r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑣  ≤  𝑊 ) | 
						
							| 15 | 13 14 | jca | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) ) | 
						
							| 16 |  | simp23 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝐹  ∈  𝑇 ) | 
						
							| 17 |  | simp32 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑣  ≠  ( 𝑅 ‘ 𝐹 ) ) | 
						
							| 18 | 1 2 3 4 5 6 7 8 | cdlemg31d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  𝑁  ∈  𝐴 ) )  →  ¬  𝑁  ≤  𝑊 ) | 
						
							| 19 | 9 10 11 15 16 17 12 18 | syl133anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ¬  𝑁  ≤  𝑊 ) | 
						
							| 20 | 12 19 | jca | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝑁  ∈  𝐴  ∧  ¬  𝑁  ≤  𝑊 ) ) | 
						
							| 21 |  | simp31 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑃  ≠  𝑄 ) | 
						
							| 22 |  | nbrne2 | ⊢ ( ( 𝑣  ≤  𝑊  ∧  ¬  𝑁  ≤  𝑊 )  →  𝑣  ≠  𝑁 ) | 
						
							| 23 | 22 | necomd | ⊢ ( ( 𝑣  ≤  𝑊  ∧  ¬  𝑁  ≤  𝑊 )  →  𝑁  ≠  𝑣 ) | 
						
							| 24 | 14 19 23 | syl2anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑁  ≠  𝑣 ) | 
						
							| 25 | 13 24 | jca | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝑣  ∈  𝐴  ∧  𝑁  ≠  𝑣 ) ) | 
						
							| 26 |  | simp33 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) | 
						
							| 27 | 1 2 4 5 | 4atex3 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑁  ∈  𝐴  ∧  ¬  𝑁  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑣  ∈  𝐴  ∧  𝑁  ≠  𝑣 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑧  ≠  𝑁  ∧  𝑧  ≠  𝑣  ∧  𝑧  ≤  ( 𝑁  ∨  𝑣 ) ) ) ) | 
						
							| 28 | 9 10 11 20 21 25 26 27 | syl133anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑧  ≠  𝑁  ∧  𝑧  ≠  𝑣  ∧  𝑧  ≤  ( 𝑁  ∨  𝑣 ) ) ) ) | 
						
							| 29 |  | df-3an | ⊢ ( ( 𝑧  ≠  𝑁  ∧  𝑧  ≠  𝑣  ∧  𝑧  ≤  ( 𝑁  ∨  𝑣 ) )  ↔  ( ( 𝑧  ≠  𝑁  ∧  𝑧  ≠  𝑣 )  ∧  𝑧  ≤  ( 𝑁  ∨  𝑣 ) ) ) | 
						
							| 30 |  | simpl | ⊢ ( ( 𝑧  ≠  𝑁  ∧  𝑧  ≠  𝑣 )  →  𝑧  ≠  𝑁 ) | 
						
							| 31 | 30 | a1i | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( ( 𝑧  ≠  𝑁  ∧  𝑧  ≠  𝑣 )  →  𝑧  ≠  𝑁 ) ) | 
						
							| 32 |  | simp12l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 33 |  | simp13l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 34 | 1 2 3 4 5 6 7 8 | cdlemg31a | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝐹  ∈  𝑇 ) )  →  𝑁  ≤  ( 𝑃  ∨  𝑣 ) ) | 
						
							| 35 | 9 32 33 13 16 34 | syl122anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑁  ≤  ( 𝑃  ∨  𝑣 ) ) | 
						
							| 36 |  | simp11l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝐾  ∈  HL ) | 
						
							| 37 | 1 2 4 | hlatlej2 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  →  𝑣  ≤  ( 𝑃  ∨  𝑣 ) ) | 
						
							| 38 | 36 32 13 37 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑣  ≤  ( 𝑃  ∨  𝑣 ) ) | 
						
							| 39 | 36 | hllatd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝐾  ∈  Lat ) | 
						
							| 40 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 41 | 40 4 | atbase | ⊢ ( 𝑁  ∈  𝐴  →  𝑁  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 42 | 12 41 | syl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑁  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 43 | 40 4 | atbase | ⊢ ( 𝑣  ∈  𝐴  →  𝑣  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 44 | 13 43 | syl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑣  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 45 | 40 2 4 | hlatjcl | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  →  ( 𝑃  ∨  𝑣 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 46 | 36 32 13 45 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝑃  ∨  𝑣 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 47 | 40 1 2 | latjle12 | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑁  ∈  ( Base ‘ 𝐾 )  ∧  𝑣  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑣 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑁  ≤  ( 𝑃  ∨  𝑣 )  ∧  𝑣  ≤  ( 𝑃  ∨  𝑣 ) )  ↔  ( 𝑁  ∨  𝑣 )  ≤  ( 𝑃  ∨  𝑣 ) ) ) | 
						
							| 48 | 39 42 44 46 47 | syl13anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( ( 𝑁  ≤  ( 𝑃  ∨  𝑣 )  ∧  𝑣  ≤  ( 𝑃  ∨  𝑣 ) )  ↔  ( 𝑁  ∨  𝑣 )  ≤  ( 𝑃  ∨  𝑣 ) ) ) | 
						
							| 49 | 35 38 48 | mpbi2and | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝑁  ∨  𝑣 )  ≤  ( 𝑃  ∨  𝑣 ) ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( 𝑁  ∨  𝑣 )  ≤  ( 𝑃  ∨  𝑣 ) ) | 
						
							| 51 | 39 | adantr | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑧  ∈  𝐴 )  →  𝐾  ∈  Lat ) | 
						
							| 52 | 40 4 | atbase | ⊢ ( 𝑧  ∈  𝐴  →  𝑧  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑧  ∈  𝐴 )  →  𝑧  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 54 | 40 2 4 | hlatjcl | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑁  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  →  ( 𝑁  ∨  𝑣 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 55 | 36 12 13 54 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝑁  ∨  𝑣 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( 𝑁  ∨  𝑣 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 57 | 46 | adantr | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( 𝑃  ∨  𝑣 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 58 | 40 1 | lattr | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑧  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑁  ∨  𝑣 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑣 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑧  ≤  ( 𝑁  ∨  𝑣 )  ∧  ( 𝑁  ∨  𝑣 )  ≤  ( 𝑃  ∨  𝑣 ) )  →  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) | 
						
							| 59 | 51 53 56 57 58 | syl13anc | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( ( 𝑧  ≤  ( 𝑁  ∨  𝑣 )  ∧  ( 𝑁  ∨  𝑣 )  ≤  ( 𝑃  ∨  𝑣 ) )  →  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) | 
						
							| 60 | 50 59 | mpan2d | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( 𝑧  ≤  ( 𝑁  ∨  𝑣 )  →  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) | 
						
							| 61 | 31 60 | anim12d | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( ( ( 𝑧  ≠  𝑁  ∧  𝑧  ≠  𝑣 )  ∧  𝑧  ≤  ( 𝑁  ∨  𝑣 ) )  →  ( 𝑧  ≠  𝑁  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) ) | 
						
							| 62 | 29 61 | biimtrid | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( ( 𝑧  ≠  𝑁  ∧  𝑧  ≠  𝑣  ∧  𝑧  ≤  ( 𝑁  ∨  𝑣 ) )  →  ( 𝑧  ≠  𝑁  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) ) | 
						
							| 63 | 62 | anim2d | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑧  ≠  𝑁  ∧  𝑧  ≠  𝑣  ∧  𝑧  ≤  ( 𝑁  ∨  𝑣 ) ) )  →  ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑧  ≠  𝑁  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) ) ) | 
						
							| 64 | 63 | reximdva | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑧  ≠  𝑁  ∧  𝑧  ≠  𝑣  ∧  𝑧  ≤  ( 𝑁  ∨  𝑣 ) ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑧  ≠  𝑁  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) ) ) | 
						
							| 65 | 28 64 | mpd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑧  ≠  𝑁  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) ) |