| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdlemg12.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | cdlemg12.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | cdlemg12.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 |  | cdlemg12.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 6 |  | cdlemg12.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | cdlemg12b.r | ⊢ 𝑅  =  ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | cdlemg31.n | ⊢ 𝑁  =  ( ( 𝑃  ∨  𝑣 )  ∧  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) ) | 
						
							| 9 |  | simp11l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  →  𝐾  ∈  HL ) | 
						
							| 10 |  | simp11r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  →  𝑊  ∈  𝐻 ) | 
						
							| 11 | 9 10 | jca | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 12 |  | simp13 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) | 
						
							| 13 |  | simp31 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  →  𝑣  ≠  ( 𝑅 ‘ 𝐹 ) ) | 
						
							| 14 | 13 | necomd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  →  ( 𝑅 ‘ 𝐹 )  ≠  𝑣 ) | 
						
							| 15 |  | simp12 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) ) | 
						
							| 16 |  | simp2r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  →  𝐹  ∈  𝑇 ) | 
						
							| 17 |  | simp32 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  →  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) | 
						
							| 18 | 1 4 5 6 7 | trlat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝑅 ‘ 𝐹 )  ∈  𝐴 ) | 
						
							| 19 | 11 15 16 17 18 | syl112anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  →  ( 𝑅 ‘ 𝐹 )  ∈  𝐴 ) | 
						
							| 20 | 1 5 6 7 | trlle | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇 )  →  ( 𝑅 ‘ 𝐹 )  ≤  𝑊 ) | 
						
							| 21 | 11 16 20 | syl2anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  →  ( 𝑅 ‘ 𝐹 )  ≤  𝑊 ) | 
						
							| 22 |  | simp2l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  →  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) ) | 
						
							| 23 | 1 2 4 5 | lhp2atnle | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  𝑣 )  ∧  ( ( 𝑅 ‘ 𝐹 )  ∈  𝐴  ∧  ( 𝑅 ‘ 𝐹 )  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  →  ¬  𝑣  ≤  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) ) | 
						
							| 24 | 11 12 14 19 21 22 23 | syl321anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  →  ¬  𝑣  ≤  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) ) | 
						
							| 25 |  | simp12l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 26 |  | simp13l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 27 |  | simp2ll | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  →  𝑣  ∈  𝐴 ) | 
						
							| 28 | 1 2 3 4 5 6 7 8 | cdlemg31a | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝐹  ∈  𝑇 ) )  →  𝑁  ≤  ( 𝑃  ∨  𝑣 ) ) | 
						
							| 29 | 9 10 25 26 27 16 28 | syl222anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  →  𝑁  ≤  ( 𝑃  ∨  𝑣 ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  ∧  𝑁  ≤  𝑊 )  →  𝑁  ≤  ( 𝑃  ∨  𝑣 ) ) | 
						
							| 31 |  | simp111 | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  ∧  𝑁  ≤  𝑊  ∧  𝑁  ≠  𝑣 )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 32 |  | simp112 | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  ∧  𝑁  ≤  𝑊  ∧  𝑁  ≠  𝑣 )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) ) | 
						
							| 33 |  | simp3 | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  ∧  𝑁  ≤  𝑊  ∧  𝑁  ≠  𝑣 )  →  𝑁  ≠  𝑣 ) | 
						
							| 34 | 33 | necomd | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  ∧  𝑁  ≤  𝑊  ∧  𝑁  ≠  𝑣 )  →  𝑣  ≠  𝑁 ) | 
						
							| 35 |  | simp12l | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  ∧  𝑁  ≤  𝑊  ∧  𝑁  ≠  𝑣 )  →  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) ) | 
						
							| 36 |  | simp133 | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  ∧  𝑁  ≤  𝑊  ∧  𝑁  ≠  𝑣 )  →  𝑁  ∈  𝐴 ) | 
						
							| 37 |  | simp2 | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  ∧  𝑁  ≤  𝑊  ∧  𝑁  ≠  𝑣 )  →  𝑁  ≤  𝑊 ) | 
						
							| 38 | 1 2 4 5 | lhp2atnle | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑣  ≠  𝑁 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  ∈  𝐴  ∧  𝑁  ≤  𝑊 ) )  →  ¬  𝑁  ≤  ( 𝑃  ∨  𝑣 ) ) | 
						
							| 39 | 31 32 34 35 36 37 38 | syl312anc | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  ∧  𝑁  ≤  𝑊  ∧  𝑁  ≠  𝑣 )  →  ¬  𝑁  ≤  ( 𝑃  ∨  𝑣 ) ) | 
						
							| 40 | 39 | 3expia | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  ∧  𝑁  ≤  𝑊 )  →  ( 𝑁  ≠  𝑣  →  ¬  𝑁  ≤  ( 𝑃  ∨  𝑣 ) ) ) | 
						
							| 41 | 40 | necon4ad | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  ∧  𝑁  ≤  𝑊 )  →  ( 𝑁  ≤  ( 𝑃  ∨  𝑣 )  →  𝑁  =  𝑣 ) ) | 
						
							| 42 | 30 41 | mpd | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  ∧  𝑁  ≤  𝑊 )  →  𝑁  =  𝑣 ) | 
						
							| 43 | 1 2 3 4 5 6 7 8 | cdlemg31b | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝐹  ∈  𝑇 ) )  →  𝑁  ≤  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) ) | 
						
							| 44 | 9 10 25 26 27 16 43 | syl222anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  →  𝑁  ≤  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  ∧  𝑁  ≤  𝑊 )  →  𝑁  ≤  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) ) | 
						
							| 46 | 42 45 | eqbrtrrd | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  ∧  𝑁  ≤  𝑊 )  →  𝑣  ≤  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) ) | 
						
							| 47 | 24 46 | mtand | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  𝑁  ∈  𝐴 ) )  →  ¬  𝑁  ≤  𝑊 ) |