Metamath Proof Explorer


Theorem cdlemg31c

Description: Show that when N is an atom, it is not under W . TODO: Is there a shorter direct proof? TODO: should we eliminate ( FP ) =/= P here? (Contributed by NM, 29-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
cdlemg31.n N=P˙v˙Q˙RF
Assertion cdlemg31c KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNA¬N˙W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 cdlemg31.n N=P˙v˙Q˙RF
9 simp11l KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAKHL
10 simp11r KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAWH
11 9 10 jca KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAKHLWH
12 simp13 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAQA¬Q˙W
13 simp31 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAvRF
14 13 necomd KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNARFv
15 simp12 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAPA¬P˙W
16 simp2r KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAFT
17 simp32 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAFPP
18 1 4 5 6 7 trlat KHLWHPA¬P˙WFTFPPRFA
19 11 15 16 17 18 syl112anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNARFA
20 1 5 6 7 trlle KHLWHFTRF˙W
21 11 16 20 syl2anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNARF˙W
22 simp2l KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAvAv˙W
23 1 2 4 5 lhp2atnle KHLWHQA¬Q˙WRFvRFARF˙WvAv˙W¬v˙Q˙RF
24 11 12 14 19 21 22 23 syl321anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNA¬v˙Q˙RF
25 simp12l KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAPA
26 simp13l KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAQA
27 simp2ll KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAvA
28 1 2 3 4 5 6 7 8 cdlemg31a KHLWHPAQAvAFTN˙P˙v
29 9 10 25 26 27 16 28 syl222anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAN˙P˙v
30 29 adantr KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAN˙WN˙P˙v
31 simp111 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAN˙WNvKHLWH
32 simp112 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAN˙WNvPA¬P˙W
33 simp3 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAN˙WNvNv
34 33 necomd KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAN˙WNvvN
35 simp12l KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAN˙WNvvAv˙W
36 simp133 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAN˙WNvNA
37 simp2 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAN˙WNvN˙W
38 1 2 4 5 lhp2atnle KHLWHPA¬P˙WvNvAv˙WNAN˙W¬N˙P˙v
39 31 32 34 35 36 37 38 syl312anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAN˙WNv¬N˙P˙v
40 39 3expia KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAN˙WNv¬N˙P˙v
41 40 necon4ad KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAN˙WN˙P˙vN=v
42 30 41 mpd KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAN˙WN=v
43 1 2 3 4 5 6 7 8 cdlemg31b KHLWHPAQAvAFTN˙Q˙RF
44 9 10 25 26 27 16 43 syl222anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAN˙Q˙RF
45 44 adantr KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAN˙WN˙Q˙RF
46 42 45 eqbrtrrd KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNAN˙Wv˙Q˙RF
47 24 46 mtand KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNA¬N˙W