Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemg12.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdlemg12.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdlemg12.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemg12.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemg12.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemg12b.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemg31.n |
⊢ 𝑁 = ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) |
9 |
|
cdlemg33.o |
⊢ 𝑂 = ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐺 ) ) ) |
10 |
|
simp1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ 𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) |
11 |
|
simp21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ 𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) |
12 |
|
simp22l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ 𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝑁 ∈ 𝐴 ) |
13 |
|
simp23l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ 𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝐹 ∈ 𝑇 ) |
14 |
|
simp3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ 𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) |
15 |
1 2 3 4 5 6 7 8
|
cdlemg33b0 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝑁 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ) ) ) |
16 |
10 11 12 13 14 15
|
syl131anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ 𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ) ) ) |
17 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ 𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝐾 ∈ HL ) |
18 |
17
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ 𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝐾 ∈ HL ) |
19 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
20 |
18 19
|
syl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ 𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝐾 ∈ AtLat ) |
21 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
22 |
21 4
|
atn0 |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ≠ ( 0. ‘ 𝐾 ) ) |
23 |
20 22
|
sylancom |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ 𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ≠ ( 0. ‘ 𝐾 ) ) |
24 |
|
simp22r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ 𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝑂 = ( 0. ‘ 𝐾 ) ) |
25 |
24
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ 𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑂 = ( 0. ‘ 𝐾 ) ) |
26 |
23 25
|
neeqtrrd |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ 𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ≠ 𝑂 ) |
27 |
26
|
biantrud |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ 𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑧 ≠ 𝑁 ↔ ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ) ) |
28 |
27
|
anbi1d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ 𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ) ↔ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ) ) ) |
29 |
|
df-3an |
⊢ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ) ↔ ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ) ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ) ) |
30 |
28 29
|
bitr4di |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ 𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ) ↔ ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ) ) ) |
31 |
30
|
anbi2d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ 𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ) ) ↔ ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ) ) ) ) |
32 |
31
|
rexbidva |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ 𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ) ) ↔ ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ) ) ) ) |
33 |
16 32
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ 𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ) ) ) |