Metamath Proof Explorer


Theorem cdlemg33c

Description: TODO: Fix comment. (Contributed by NM, 30-May-2013)

Ref Expression
Hypotheses cdlemg12.l = ( le ‘ 𝐾 )
cdlemg12.j = ( join ‘ 𝐾 )
cdlemg12.m = ( meet ‘ 𝐾 )
cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemg31.n 𝑁 = ( ( 𝑃 𝑣 ) ( 𝑄 ( 𝑅𝐹 ) ) )
cdlemg33.o 𝑂 = ( ( 𝑃 𝑣 ) ( 𝑄 ( 𝑅𝐺 ) ) )
Assertion cdlemg33c ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝑃𝑄𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑧𝑁𝑧𝑂𝑧 ( 𝑃 𝑣 ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemg12.l = ( le ‘ 𝐾 )
2 cdlemg12.j = ( join ‘ 𝐾 )
3 cdlemg12.m = ( meet ‘ 𝐾 )
4 cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemg31.n 𝑁 = ( ( 𝑃 𝑣 ) ( 𝑄 ( 𝑅𝐹 ) ) )
9 cdlemg33.o 𝑂 = ( ( 𝑃 𝑣 ) ( 𝑄 ( 𝑅𝐺 ) ) )
10 simp1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝑃𝑄𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) )
11 simp21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝑃𝑄𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑣𝐴𝑣 𝑊 ) )
12 simp22l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝑃𝑄𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑁𝐴 )
13 simp23l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝑃𝑄𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝐹𝑇 )
14 simp3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝑃𝑄𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑃𝑄𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) )
15 1 2 3 4 5 6 7 8 cdlemg33b0 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ 𝑁𝐴𝐹𝑇 ) ∧ ( 𝑃𝑄𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑧𝑁𝑧 ( 𝑃 𝑣 ) ) ) )
16 10 11 12 13 14 15 syl131anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝑃𝑄𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑧𝑁𝑧 ( 𝑃 𝑣 ) ) ) )
17 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝑃𝑄𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝐾 ∈ HL )
18 17 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝑃𝑄𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑧𝐴 ) → 𝐾 ∈ HL )
19 hlatl ( 𝐾 ∈ HL → 𝐾 ∈ AtLat )
20 18 19 syl ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝑃𝑄𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑧𝐴 ) → 𝐾 ∈ AtLat )
21 eqid ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 )
22 21 4 atn0 ( ( 𝐾 ∈ AtLat ∧ 𝑧𝐴 ) → 𝑧 ≠ ( 0. ‘ 𝐾 ) )
23 20 22 sylancom ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝑃𝑄𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑧𝐴 ) → 𝑧 ≠ ( 0. ‘ 𝐾 ) )
24 simp22r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝑃𝑄𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑂 = ( 0. ‘ 𝐾 ) )
25 24 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝑃𝑄𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑧𝐴 ) → 𝑂 = ( 0. ‘ 𝐾 ) )
26 23 25 neeqtrrd ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝑃𝑄𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑧𝐴 ) → 𝑧𝑂 )
27 26 biantrud ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝑃𝑄𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑧𝐴 ) → ( 𝑧𝑁 ↔ ( 𝑧𝑁𝑧𝑂 ) ) )
28 27 anbi1d ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝑃𝑄𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑧𝐴 ) → ( ( 𝑧𝑁𝑧 ( 𝑃 𝑣 ) ) ↔ ( ( 𝑧𝑁𝑧𝑂 ) ∧ 𝑧 ( 𝑃 𝑣 ) ) ) )
29 df-3an ( ( 𝑧𝑁𝑧𝑂𝑧 ( 𝑃 𝑣 ) ) ↔ ( ( 𝑧𝑁𝑧𝑂 ) ∧ 𝑧 ( 𝑃 𝑣 ) ) )
30 28 29 bitr4di ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝑃𝑄𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑧𝐴 ) → ( ( 𝑧𝑁𝑧 ( 𝑃 𝑣 ) ) ↔ ( 𝑧𝑁𝑧𝑂𝑧 ( 𝑃 𝑣 ) ) ) )
31 30 anbi2d ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝑃𝑄𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑧𝐴 ) → ( ( ¬ 𝑧 𝑊 ∧ ( 𝑧𝑁𝑧 ( 𝑃 𝑣 ) ) ) ↔ ( ¬ 𝑧 𝑊 ∧ ( 𝑧𝑁𝑧𝑂𝑧 ( 𝑃 𝑣 ) ) ) ) )
32 31 rexbidva ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝑃𝑄𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑧𝑁𝑧 ( 𝑃 𝑣 ) ) ) ↔ ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑧𝑁𝑧𝑂𝑧 ( 𝑃 𝑣 ) ) ) ) )
33 16 32 mpbid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑣𝐴𝑣 𝑊 ) ∧ ( 𝑁𝐴𝑂 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝑃𝑄𝑣 ≠ ( 𝑅𝐹 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑧𝑁𝑧𝑂𝑧 ( 𝑃 𝑣 ) ) ) )