| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdlemg12.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | cdlemg12.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | cdlemg12.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 |  | cdlemg12.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 6 |  | cdlemg12.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | cdlemg12b.r | ⊢ 𝑅  =  ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | cdlemg31.n | ⊢ 𝑁  =  ( ( 𝑃  ∨  𝑣 )  ∧  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) ) | 
						
							| 9 |  | cdlemg33.o | ⊢ 𝑂  =  ( ( 𝑃  ∨  𝑣 )  ∧  ( 𝑄  ∨  ( 𝑅 ‘ 𝐺 ) ) ) | 
						
							| 10 |  | simp1 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  ∈  𝐴  ∧  𝑂  =  ( 0. ‘ 𝐾 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) ) | 
						
							| 11 |  | simp21 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  ∈  𝐴  ∧  𝑂  =  ( 0. ‘ 𝐾 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) ) | 
						
							| 12 |  | simp22l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  ∈  𝐴  ∧  𝑂  =  ( 0. ‘ 𝐾 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑁  ∈  𝐴 ) | 
						
							| 13 |  | simp23l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  ∈  𝐴  ∧  𝑂  =  ( 0. ‘ 𝐾 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝐹  ∈  𝑇 ) | 
						
							| 14 |  | simp3 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  ∈  𝐴  ∧  𝑂  =  ( 0. ‘ 𝐾 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 | cdlemg33b0 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝑁  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑧  ≠  𝑁  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) ) | 
						
							| 16 | 10 11 12 13 14 15 | syl131anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  ∈  𝐴  ∧  𝑂  =  ( 0. ‘ 𝐾 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑧  ≠  𝑁  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) ) | 
						
							| 17 |  | simp11l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  ∈  𝐴  ∧  𝑂  =  ( 0. ‘ 𝐾 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝐾  ∈  HL ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  ∈  𝐴  ∧  𝑂  =  ( 0. ‘ 𝐾 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑧  ∈  𝐴 )  →  𝐾  ∈  HL ) | 
						
							| 19 |  | hlatl | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  AtLat ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  ∈  𝐴  ∧  𝑂  =  ( 0. ‘ 𝐾 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑧  ∈  𝐴 )  →  𝐾  ∈  AtLat ) | 
						
							| 21 |  | eqid | ⊢ ( 0. ‘ 𝐾 )  =  ( 0. ‘ 𝐾 ) | 
						
							| 22 | 21 4 | atn0 | ⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑧  ∈  𝐴 )  →  𝑧  ≠  ( 0. ‘ 𝐾 ) ) | 
						
							| 23 | 20 22 | sylancom | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  ∈  𝐴  ∧  𝑂  =  ( 0. ‘ 𝐾 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑧  ∈  𝐴 )  →  𝑧  ≠  ( 0. ‘ 𝐾 ) ) | 
						
							| 24 |  | simp22r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  ∈  𝐴  ∧  𝑂  =  ( 0. ‘ 𝐾 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑂  =  ( 0. ‘ 𝐾 ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  ∈  𝐴  ∧  𝑂  =  ( 0. ‘ 𝐾 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑧  ∈  𝐴 )  →  𝑂  =  ( 0. ‘ 𝐾 ) ) | 
						
							| 26 | 23 25 | neeqtrrd | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  ∈  𝐴  ∧  𝑂  =  ( 0. ‘ 𝐾 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑧  ∈  𝐴 )  →  𝑧  ≠  𝑂 ) | 
						
							| 27 | 26 | biantrud | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  ∈  𝐴  ∧  𝑂  =  ( 0. ‘ 𝐾 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( 𝑧  ≠  𝑁  ↔  ( 𝑧  ≠  𝑁  ∧  𝑧  ≠  𝑂 ) ) ) | 
						
							| 28 | 27 | anbi1d | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  ∈  𝐴  ∧  𝑂  =  ( 0. ‘ 𝐾 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( ( 𝑧  ≠  𝑁  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) )  ↔  ( ( 𝑧  ≠  𝑁  ∧  𝑧  ≠  𝑂 )  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) ) | 
						
							| 29 |  | df-3an | ⊢ ( ( 𝑧  ≠  𝑁  ∧  𝑧  ≠  𝑂  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) )  ↔  ( ( 𝑧  ≠  𝑁  ∧  𝑧  ≠  𝑂 )  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) | 
						
							| 30 | 28 29 | bitr4di | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  ∈  𝐴  ∧  𝑂  =  ( 0. ‘ 𝐾 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( ( 𝑧  ≠  𝑁  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) )  ↔  ( 𝑧  ≠  𝑁  ∧  𝑧  ≠  𝑂  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) ) | 
						
							| 31 | 30 | anbi2d | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  ∈  𝐴  ∧  𝑂  =  ( 0. ‘ 𝐾 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑧  ≠  𝑁  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) )  ↔  ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑧  ≠  𝑁  ∧  𝑧  ≠  𝑂  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) ) ) | 
						
							| 32 | 31 | rexbidva | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  ∈  𝐴  ∧  𝑂  =  ( 0. ‘ 𝐾 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑧  ≠  𝑁  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) )  ↔  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑧  ≠  𝑁  ∧  𝑧  ≠  𝑂  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) ) ) | 
						
							| 33 | 16 32 | mpbid | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  ∈  𝐴  ∧  𝑂  =  ( 0. ‘ 𝐾 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑧  ≠  𝑁  ∧  𝑧  ≠  𝑂  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) ) |