| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdlemg12.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | cdlemg12.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | cdlemg12.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 |  | cdlemg12.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 6 |  | cdlemg12.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | cdlemg12b.r | ⊢ 𝑅  =  ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | cdlemg31.n | ⊢ 𝑁  =  ( ( 𝑃  ∨  𝑣 )  ∧  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) ) | 
						
							| 9 |  | cdlemg33.o | ⊢ 𝑂  =  ( ( 𝑃  ∨  𝑣 )  ∧  ( 𝑄  ∨  ( 𝑅 ‘ 𝐺 ) ) ) | 
						
							| 10 |  | simp1 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  =  ( 0. ‘ 𝐾 )  ∧  𝑂  ∈  𝐴 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) ) | 
						
							| 11 |  | simp21 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  =  ( 0. ‘ 𝐾 )  ∧  𝑂  ∈  𝐴 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) ) | 
						
							| 12 |  | simp22r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  =  ( 0. ‘ 𝐾 )  ∧  𝑂  ∈  𝐴 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑂  ∈  𝐴 ) | 
						
							| 13 |  | simp22l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  =  ( 0. ‘ 𝐾 )  ∧  𝑂  ∈  𝐴 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑁  =  ( 0. ‘ 𝐾 ) ) | 
						
							| 14 | 12 13 | jca | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  =  ( 0. ‘ 𝐾 )  ∧  𝑂  ∈  𝐴 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝑂  ∈  𝐴  ∧  𝑁  =  ( 0. ‘ 𝐾 ) ) ) | 
						
							| 15 |  | simp23r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  =  ( 0. ‘ 𝐾 )  ∧  𝑂  ∈  𝐴 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝐺  ∈  𝑇 ) | 
						
							| 16 |  | simp23l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  =  ( 0. ‘ 𝐾 )  ∧  𝑂  ∈  𝐴 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝐹  ∈  𝑇 ) | 
						
							| 17 | 15 16 | jca | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  =  ( 0. ‘ 𝐾 )  ∧  𝑂  ∈  𝐴 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝐺  ∈  𝑇  ∧  𝐹  ∈  𝑇 ) ) | 
						
							| 18 |  | simp3 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  =  ( 0. ‘ 𝐾 )  ∧  𝑂  ∈  𝐴 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) ) | 
						
							| 19 | 1 2 3 4 5 6 7 9 8 | cdlemg33c | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑂  ∈  𝐴  ∧  𝑁  =  ( 0. ‘ 𝐾 ) )  ∧  ( 𝐺  ∈  𝑇  ∧  𝐹  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑧  ≠  𝑂  ∧  𝑧  ≠  𝑁  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) ) | 
						
							| 20 | 10 11 14 17 18 19 | syl131anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  =  ( 0. ‘ 𝐾 )  ∧  𝑂  ∈  𝐴 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑧  ≠  𝑂  ∧  𝑧  ≠  𝑁  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) ) | 
						
							| 21 |  | 3ancoma | ⊢ ( ( 𝑧  ≠  𝑂  ∧  𝑧  ≠  𝑁  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) )  ↔  ( 𝑧  ≠  𝑁  ∧  𝑧  ≠  𝑂  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) | 
						
							| 22 | 21 | anbi2i | ⊢ ( ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑧  ≠  𝑂  ∧  𝑧  ≠  𝑁  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) )  ↔  ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑧  ≠  𝑁  ∧  𝑧  ≠  𝑂  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) ) | 
						
							| 23 | 22 | rexbii | ⊢ ( ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑧  ≠  𝑂  ∧  𝑧  ≠  𝑁  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) )  ↔  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑧  ≠  𝑁  ∧  𝑧  ≠  𝑂  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) ) | 
						
							| 24 | 20 23 | sylib | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  ( 𝑁  =  ( 0. ‘ 𝐾 )  ∧  𝑂  ∈  𝐴 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑧  ≠  𝑁  ∧  𝑧  ≠  𝑂  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) ) |