| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | cdlemg12.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | cdlemg12.m |  |-  ./\ = ( meet ` K ) | 
						
							| 4 |  | cdlemg12.a |  |-  A = ( Atoms ` K ) | 
						
							| 5 |  | cdlemg12.h |  |-  H = ( LHyp ` K ) | 
						
							| 6 |  | cdlemg12.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 7 |  | cdlemg12b.r |  |-  R = ( ( trL ` K ) ` W ) | 
						
							| 8 |  | cdlemg31.n |  |-  N = ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) ) | 
						
							| 9 |  | cdlemg33.o |  |-  O = ( ( P .\/ v ) ./\ ( Q .\/ ( R ` G ) ) ) | 
						
							| 10 |  | simp1 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N = ( 0. ` K ) /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( P =/= Q /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) ) | 
						
							| 11 |  | simp21 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N = ( 0. ` K ) /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( P =/= Q /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( v e. A /\ v .<_ W ) ) | 
						
							| 12 |  | simp22r |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N = ( 0. ` K ) /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( P =/= Q /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> O e. A ) | 
						
							| 13 |  | simp22l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N = ( 0. ` K ) /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( P =/= Q /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> N = ( 0. ` K ) ) | 
						
							| 14 | 12 13 | jca |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N = ( 0. ` K ) /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( P =/= Q /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( O e. A /\ N = ( 0. ` K ) ) ) | 
						
							| 15 |  | simp23r |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N = ( 0. ` K ) /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( P =/= Q /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> G e. T ) | 
						
							| 16 |  | simp23l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N = ( 0. ` K ) /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( P =/= Q /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> F e. T ) | 
						
							| 17 | 15 16 | jca |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N = ( 0. ` K ) /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( P =/= Q /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( G e. T /\ F e. T ) ) | 
						
							| 18 |  | simp3 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N = ( 0. ` K ) /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( P =/= Q /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( P =/= Q /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) | 
						
							| 19 | 1 2 3 4 5 6 7 9 8 | cdlemg33c |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( O e. A /\ N = ( 0. ` K ) ) /\ ( G e. T /\ F e. T ) ) /\ ( P =/= Q /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. z e. A ( -. z .<_ W /\ ( z =/= O /\ z =/= N /\ z .<_ ( P .\/ v ) ) ) ) | 
						
							| 20 | 10 11 14 17 18 19 | syl131anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N = ( 0. ` K ) /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( P =/= Q /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. z e. A ( -. z .<_ W /\ ( z =/= O /\ z =/= N /\ z .<_ ( P .\/ v ) ) ) ) | 
						
							| 21 |  | 3ancoma |  |-  ( ( z =/= O /\ z =/= N /\ z .<_ ( P .\/ v ) ) <-> ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) | 
						
							| 22 | 21 | anbi2i |  |-  ( ( -. z .<_ W /\ ( z =/= O /\ z =/= N /\ z .<_ ( P .\/ v ) ) ) <-> ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) ) | 
						
							| 23 | 22 | rexbii |  |-  ( E. z e. A ( -. z .<_ W /\ ( z =/= O /\ z =/= N /\ z .<_ ( P .\/ v ) ) ) <-> E. z e. A ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) ) | 
						
							| 24 | 20 23 | sylib |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N = ( 0. ` K ) /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( P =/= Q /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. z e. A ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) ) |