Metamath Proof Explorer


Theorem cdlemg33d

Description: TODO: Fix comment. (Contributed by NM, 30-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
cdlemg31.n N=P˙v˙Q˙RF
cdlemg33.o O=P˙v˙Q˙RG
Assertion cdlemg33d KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KOAFTGTPQvRGrA¬r˙WP˙r=Q˙rzA¬z˙WzNzOz˙P˙v

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 cdlemg31.n N=P˙v˙Q˙RF
9 cdlemg33.o O=P˙v˙Q˙RG
10 simp1 KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KOAFTGTPQvRGrA¬r˙WP˙r=Q˙rKHLWHPA¬P˙WQA¬Q˙W
11 simp21 KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KOAFTGTPQvRGrA¬r˙WP˙r=Q˙rvAv˙W
12 simp22r KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KOAFTGTPQvRGrA¬r˙WP˙r=Q˙rOA
13 simp22l KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KOAFTGTPQvRGrA¬r˙WP˙r=Q˙rN=0.K
14 12 13 jca KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KOAFTGTPQvRGrA¬r˙WP˙r=Q˙rOAN=0.K
15 simp23r KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KOAFTGTPQvRGrA¬r˙WP˙r=Q˙rGT
16 simp23l KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KOAFTGTPQvRGrA¬r˙WP˙r=Q˙rFT
17 15 16 jca KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KOAFTGTPQvRGrA¬r˙WP˙r=Q˙rGTFT
18 simp3 KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KOAFTGTPQvRGrA¬r˙WP˙r=Q˙rPQvRGrA¬r˙WP˙r=Q˙r
19 1 2 3 4 5 6 7 9 8 cdlemg33c KHLWHPA¬P˙WQA¬Q˙WvAv˙WOAN=0.KGTFTPQvRGrA¬r˙WP˙r=Q˙rzA¬z˙WzOzNz˙P˙v
20 10 11 14 17 18 19 syl131anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KOAFTGTPQvRGrA¬r˙WP˙r=Q˙rzA¬z˙WzOzNz˙P˙v
21 3ancoma zOzNz˙P˙vzNzOz˙P˙v
22 21 anbi2i ¬z˙WzOzNz˙P˙v¬z˙WzNzOz˙P˙v
23 22 rexbii zA¬z˙WzOzNz˙P˙vzA¬z˙WzNzOz˙P˙v
24 20 23 sylib KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KOAFTGTPQvRGrA¬r˙WP˙r=Q˙rzA¬z˙WzNzOz˙P˙v