Metamath Proof Explorer


Theorem cdlemg33d

Description: TODO: Fix comment. (Contributed by NM, 30-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
cdlemg31.n N = P ˙ v ˙ Q ˙ R F
cdlemg33.o O = P ˙ v ˙ Q ˙ R G
Assertion cdlemg33d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O A F T G T P Q v R G r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z N z O z ˙ P ˙ v

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 cdlemg31.n N = P ˙ v ˙ Q ˙ R F
9 cdlemg33.o O = P ˙ v ˙ Q ˙ R G
10 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O A F T G T P Q v R G r A ¬ r ˙ W P ˙ r = Q ˙ r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
11 simp21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O A F T G T P Q v R G r A ¬ r ˙ W P ˙ r = Q ˙ r v A v ˙ W
12 simp22r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O A F T G T P Q v R G r A ¬ r ˙ W P ˙ r = Q ˙ r O A
13 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O A F T G T P Q v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N = 0. K
14 12 13 jca K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O A F T G T P Q v R G r A ¬ r ˙ W P ˙ r = Q ˙ r O A N = 0. K
15 simp23r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O A F T G T P Q v R G r A ¬ r ˙ W P ˙ r = Q ˙ r G T
16 simp23l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O A F T G T P Q v R G r A ¬ r ˙ W P ˙ r = Q ˙ r F T
17 15 16 jca K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O A F T G T P Q v R G r A ¬ r ˙ W P ˙ r = Q ˙ r G T F T
18 simp3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O A F T G T P Q v R G r A ¬ r ˙ W P ˙ r = Q ˙ r P Q v R G r A ¬ r ˙ W P ˙ r = Q ˙ r
19 1 2 3 4 5 6 7 9 8 cdlemg33c K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W O A N = 0. K G T F T P Q v R G r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z O z N z ˙ P ˙ v
20 10 11 14 17 18 19 syl131anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O A F T G T P Q v R G r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z O z N z ˙ P ˙ v
21 3ancoma z O z N z ˙ P ˙ v z N z O z ˙ P ˙ v
22 21 anbi2i ¬ z ˙ W z O z N z ˙ P ˙ v ¬ z ˙ W z N z O z ˙ P ˙ v
23 22 rexbii z A ¬ z ˙ W z O z N z ˙ P ˙ v z A ¬ z ˙ W z N z O z ˙ P ˙ v
24 20 23 sylib K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O A F T G T P Q v R G r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z N z O z ˙ P ˙ v