Metamath Proof Explorer


Theorem cdlemg33e

Description: TODO: Fix comment. (Contributed by NM, 30-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
cdlemg31.n N = P ˙ v ˙ Q ˙ R F
cdlemg33.o O = P ˙ v ˙ Q ˙ R G
Assertion cdlemg33e K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O = 0. K F T G T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z N z O z ˙ P ˙ v

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 cdlemg31.n N = P ˙ v ˙ Q ˙ R F
9 cdlemg33.o O = P ˙ v ˙ Q ˙ R G
10 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O = 0. K F T G T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
11 simp21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O = 0. K F T G T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r v A v ˙ W
12 simp23l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O = 0. K F T G T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r F T
13 simp3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O = 0. K F T G T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r
14 1 2 3 4 5 6 7 8 cdlemg33c0 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z ˙ P ˙ v
15 10 11 12 13 14 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O = 0. K F T G T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z ˙ P ˙ v
16 simp11l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O = 0. K F T G T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r K HL
17 hlatl K HL K AtLat
18 16 17 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O = 0. K F T G T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r K AtLat
19 eqid 0. K = 0. K
20 19 4 atn0 K AtLat z A z 0. K
21 18 20 sylan K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O = 0. K F T G T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r z A z 0. K
22 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O = 0. K F T G T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r N = 0. K
23 22 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O = 0. K F T G T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r z A N = 0. K
24 21 23 neeqtrrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O = 0. K F T G T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r z A z N
25 simp22r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O = 0. K F T G T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r O = 0. K
26 25 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O = 0. K F T G T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r z A O = 0. K
27 21 26 neeqtrrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O = 0. K F T G T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r z A z O
28 24 27 jca K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O = 0. K F T G T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r z A z N z O
29 28 biantrurd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O = 0. K F T G T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r z A z ˙ P ˙ v z N z O z ˙ P ˙ v
30 df-3an z N z O z ˙ P ˙ v z N z O z ˙ P ˙ v
31 29 30 bitr4di K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O = 0. K F T G T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r z A z ˙ P ˙ v z N z O z ˙ P ˙ v
32 31 anbi2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O = 0. K F T G T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z ˙ P ˙ v ¬ z ˙ W z N z O z ˙ P ˙ v
33 32 rexbidva K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O = 0. K F T G T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z ˙ P ˙ v z A ¬ z ˙ W z N z O z ˙ P ˙ v
34 15 33 mpbid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O = 0. K F T G T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z N z O z ˙ P ˙ v