Metamath Proof Explorer


Theorem cdlemg33

Description: Combine cdlemg33b , cdlemg33c , cdlemg33d , cdlemg33e . TODO: Fix comment. (Contributed by NM, 30-May-2013)

Ref Expression
Hypotheses cdlemg12.l
|- .<_ = ( le ` K )
cdlemg12.j
|- .\/ = ( join ` K )
cdlemg12.m
|- ./\ = ( meet ` K )
cdlemg12.a
|- A = ( Atoms ` K )
cdlemg12.h
|- H = ( LHyp ` K )
cdlemg12.t
|- T = ( ( LTrn ` K ) ` W )
cdlemg12b.r
|- R = ( ( trL ` K ) ` W )
cdlemg31.n
|- N = ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) )
cdlemg33.o
|- O = ( ( P .\/ v ) ./\ ( Q .\/ ( R ` G ) ) )
Assertion cdlemg33
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. z e. A ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemg12.l
 |-  .<_ = ( le ` K )
2 cdlemg12.j
 |-  .\/ = ( join ` K )
3 cdlemg12.m
 |-  ./\ = ( meet ` K )
4 cdlemg12.a
 |-  A = ( Atoms ` K )
5 cdlemg12.h
 |-  H = ( LHyp ` K )
6 cdlemg12.t
 |-  T = ( ( LTrn ` K ) ` W )
7 cdlemg12b.r
 |-  R = ( ( trL ` K ) ` W )
8 cdlemg31.n
 |-  N = ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) )
9 cdlemg33.o
 |-  O = ( ( P .\/ v ) ./\ ( Q .\/ ( R ` G ) ) )
10 simp11
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( K e. HL /\ W e. H ) )
11 simp12
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( P e. A /\ -. P .<_ W ) )
12 simp13
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( Q e. A /\ -. Q .<_ W ) )
13 simp21
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( v e. A /\ v .<_ W ) )
14 simp22l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> F e. T )
15 simp31
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> v =/= ( R ` F ) )
16 1 2 3 4 5 6 7 8 cdlemg31b0a
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) ) ) -> ( N e. A \/ N = ( 0. ` K ) ) )
17 10 11 12 13 14 15 16 syl132anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( N e. A \/ N = ( 0. ` K ) ) )
18 simp22r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> G e. T )
19 simp32
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> v =/= ( R ` G ) )
20 1 2 3 4 5 6 7 9 cdlemg31b0a
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( G e. T /\ v =/= ( R ` G ) ) ) -> ( O e. A \/ O = ( 0. ` K ) ) )
21 10 11 12 13 18 19 20 syl132anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( O e. A \/ O = ( 0. ` K ) ) )
22 simpl1
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N e. A /\ O e. A ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )
23 simpl21
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N e. A /\ O e. A ) ) -> ( v e. A /\ v .<_ W ) )
24 simpr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N e. A /\ O e. A ) ) -> ( N e. A /\ O e. A ) )
25 simpl22
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N e. A /\ O e. A ) ) -> ( F e. T /\ G e. T ) )
26 simpl23
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N e. A /\ O e. A ) ) -> P =/= Q )
27 simpl31
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N e. A /\ O e. A ) ) -> v =/= ( R ` F ) )
28 simpl33
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N e. A /\ O e. A ) ) -> E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) )
29 1 2 3 4 5 6 7 8 9 cdlemg33b
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( P =/= Q /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. z e. A ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) )
30 22 23 24 25 26 27 28 29 syl133anc
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N e. A /\ O e. A ) ) -> E. z e. A ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) )
31 30 ex
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( N e. A /\ O e. A ) -> E. z e. A ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) ) )
32 simpl1
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N = ( 0. ` K ) /\ O e. A ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )
33 simpl21
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N = ( 0. ` K ) /\ O e. A ) ) -> ( v e. A /\ v .<_ W ) )
34 simpr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N = ( 0. ` K ) /\ O e. A ) ) -> ( N = ( 0. ` K ) /\ O e. A ) )
35 simpl22
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N = ( 0. ` K ) /\ O e. A ) ) -> ( F e. T /\ G e. T ) )
36 simpl23
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N = ( 0. ` K ) /\ O e. A ) ) -> P =/= Q )
37 simpl32
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N = ( 0. ` K ) /\ O e. A ) ) -> v =/= ( R ` G ) )
38 simpl33
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N = ( 0. ` K ) /\ O e. A ) ) -> E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) )
39 1 2 3 4 5 6 7 8 9 cdlemg33d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N = ( 0. ` K ) /\ O e. A ) /\ ( F e. T /\ G e. T ) ) /\ ( P =/= Q /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. z e. A ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) )
40 32 33 34 35 36 37 38 39 syl133anc
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N = ( 0. ` K ) /\ O e. A ) ) -> E. z e. A ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) )
41 40 ex
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( N = ( 0. ` K ) /\ O e. A ) -> E. z e. A ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) ) )
42 simpl1
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N e. A /\ O = ( 0. ` K ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )
43 simpl21
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N e. A /\ O = ( 0. ` K ) ) ) -> ( v e. A /\ v .<_ W ) )
44 simpr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N e. A /\ O = ( 0. ` K ) ) ) -> ( N e. A /\ O = ( 0. ` K ) ) )
45 simpl22
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N e. A /\ O = ( 0. ` K ) ) ) -> ( F e. T /\ G e. T ) )
46 simpl23
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N e. A /\ O = ( 0. ` K ) ) ) -> P =/= Q )
47 simpl31
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N e. A /\ O = ( 0. ` K ) ) ) -> v =/= ( R ` F ) )
48 simpl33
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N e. A /\ O = ( 0. ` K ) ) ) -> E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) )
49 1 2 3 4 5 6 7 8 9 cdlemg33c
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N e. A /\ O = ( 0. ` K ) ) /\ ( F e. T /\ G e. T ) ) /\ ( P =/= Q /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. z e. A ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) )
50 42 43 44 45 46 47 48 49 syl133anc
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N e. A /\ O = ( 0. ` K ) ) ) -> E. z e. A ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) )
51 50 ex
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( N e. A /\ O = ( 0. ` K ) ) -> E. z e. A ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) ) )
52 simpl1
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N = ( 0. ` K ) /\ O = ( 0. ` K ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )
53 simpl21
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N = ( 0. ` K ) /\ O = ( 0. ` K ) ) ) -> ( v e. A /\ v .<_ W ) )
54 simpr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N = ( 0. ` K ) /\ O = ( 0. ` K ) ) ) -> ( N = ( 0. ` K ) /\ O = ( 0. ` K ) ) )
55 simpl22
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N = ( 0. ` K ) /\ O = ( 0. ` K ) ) ) -> ( F e. T /\ G e. T ) )
56 simpl23
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N = ( 0. ` K ) /\ O = ( 0. ` K ) ) ) -> P =/= Q )
57 simpl31
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N = ( 0. ` K ) /\ O = ( 0. ` K ) ) ) -> v =/= ( R ` F ) )
58 simpl33
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N = ( 0. ` K ) /\ O = ( 0. ` K ) ) ) -> E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) )
59 1 2 3 4 5 6 7 8 9 cdlemg33e
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( N = ( 0. ` K ) /\ O = ( 0. ` K ) ) /\ ( F e. T /\ G e. T ) ) /\ ( P =/= Q /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. z e. A ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) )
60 52 53 54 55 56 57 58 59 syl133anc
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( N = ( 0. ` K ) /\ O = ( 0. ` K ) ) ) -> E. z e. A ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) )
61 60 ex
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( N = ( 0. ` K ) /\ O = ( 0. ` K ) ) -> E. z e. A ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) ) )
62 31 41 51 61 ccased
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( ( N e. A \/ N = ( 0. ` K ) ) /\ ( O e. A \/ O = ( 0. ` K ) ) ) -> E. z e. A ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) ) )
63 17 21 62 mp2and
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. z e. A ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) )