Metamath Proof Explorer


Theorem cdlemg34

Description: Use cdlemg33 to eliminate z from cdlemg29 . TODO: Fix comment. (Contributed by NM, 31-May-2013)

Ref Expression
Hypotheses cdlemg12.l
|- .<_ = ( le ` K )
cdlemg12.j
|- .\/ = ( join ` K )
cdlemg12.m
|- ./\ = ( meet ` K )
cdlemg12.a
|- A = ( Atoms ` K )
cdlemg12.h
|- H = ( LHyp ` K )
cdlemg12.t
|- T = ( ( LTrn ` K ) ` W )
cdlemg12b.r
|- R = ( ( trL ` K ) ` W )
cdlemg31.n
|- N = ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) )
cdlemg33.o
|- O = ( ( P .\/ v ) ./\ ( Q .\/ ( R ` G ) ) )
Assertion cdlemg34
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) )

Proof

Step Hyp Ref Expression
1 cdlemg12.l
 |-  .<_ = ( le ` K )
2 cdlemg12.j
 |-  .\/ = ( join ` K )
3 cdlemg12.m
 |-  ./\ = ( meet ` K )
4 cdlemg12.a
 |-  A = ( Atoms ` K )
5 cdlemg12.h
 |-  H = ( LHyp ` K )
6 cdlemg12.t
 |-  T = ( ( LTrn ` K ) ` W )
7 cdlemg12b.r
 |-  R = ( ( trL ` K ) ` W )
8 cdlemg31.n
 |-  N = ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) )
9 cdlemg33.o
 |-  O = ( ( P .\/ v ) ./\ ( Q .\/ ( R ` G ) ) )
10 1 2 3 4 5 6 7 8 9 cdlemg33
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. z e. A ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) )
11 simp11
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ z e. A /\ ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )
12 simp121
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ z e. A /\ ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) ) -> ( v e. A /\ v .<_ W ) )
13 simp2
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ z e. A /\ ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) ) -> z e. A )
14 simp3l
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ z e. A /\ ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) ) -> -. z .<_ W )
15 13 14 jca
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ z e. A /\ ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) ) -> ( z e. A /\ -. z .<_ W ) )
16 simp122
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ z e. A /\ ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) ) -> ( F e. T /\ G e. T ) )
17 simp3r1
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ z e. A /\ ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) ) -> z =/= N )
18 simp3r2
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ z e. A /\ ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) ) -> z =/= O )
19 17 18 jca
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ z e. A /\ ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) ) -> ( z =/= N /\ z =/= O ) )
20 simp3r3
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ z e. A /\ ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) ) -> z .<_ ( P .\/ v ) )
21 simp131
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ z e. A /\ ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) ) -> v =/= ( R ` F ) )
22 simp132
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ z e. A /\ ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) ) -> v =/= ( R ` G ) )
23 21 22 jca
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ z e. A /\ ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) ) -> ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) )
24 1 2 3 4 5 6 7 8 9 cdlemg29
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O ) /\ z .<_ ( P .\/ v ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) )
25 11 12 15 16 19 20 23 24 syl133anc
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ z e. A /\ ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) )
26 25 rexlimdv3a
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( E. z e. A ( -. z .<_ W /\ ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) ) )
27 10 26 mpd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( F e. T /\ G e. T ) /\ P =/= Q ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) )