Metamath Proof Explorer


Theorem cdlemg38

Description: Use cdlemg37 to eliminate E. r e. A from cdlemg36 . TODO: Fix comment. (Contributed by NM, 31-May-2013)

Ref Expression
Hypotheses cdlemg35.l ˙=K
cdlemg35.j ˙=joinK
cdlemg35.m ˙=meetK
cdlemg35.a A=AtomsK
cdlemg35.h H=LHypK
cdlemg35.t T=LTrnKW
cdlemg35.r R=trLKW
Assertion cdlemg38 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGP˙FGP˙W=Q˙FGQ˙W

Proof

Step Hyp Ref Expression
1 cdlemg35.l ˙=K
2 cdlemg35.j ˙=joinK
3 cdlemg35.m ˙=meetK
4 cdlemg35.a A=AtomsK
5 cdlemg35.h H=LHypK
6 cdlemg35.t T=LTrnKW
7 cdlemg35.r R=trLKW
8 simpl1 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rKHLWHPA¬P˙WQA¬Q˙W
9 simpl2 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rFTGTPQ
10 simpl3l KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rFPPGPP
11 simpl3r KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rRFRG
12 simpr KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rrA¬r˙WP˙r=Q˙r
13 1 2 3 4 5 6 7 cdlemg36 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rP˙FGP˙W=Q˙FGQ˙W
14 8 9 10 11 12 13 syl113anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rP˙FGP˙W=Q˙FGQ˙W
15 simpl11 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRG¬rA¬r˙WP˙r=Q˙rKHLWH
16 simpl12 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRG¬rA¬r˙WP˙r=Q˙rPA¬P˙W
17 simpl13 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRG¬rA¬r˙WP˙r=Q˙rQA¬Q˙W
18 simpl21 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRG¬rA¬r˙WP˙r=Q˙rFT
19 simpl22 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRG¬rA¬r˙WP˙r=Q˙rGT
20 simpl23 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRG¬rA¬r˙WP˙r=Q˙rPQ
21 simpr KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRG¬rA¬r˙WP˙r=Q˙r¬rA¬r˙WP˙r=Q˙r
22 1 2 3 4 5 6 7 cdlemg37 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬rA¬r˙WP˙r=Q˙rP˙FGP˙W=Q˙FGQ˙W
23 15 16 17 18 19 20 21 22 syl133anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRG¬rA¬r˙WP˙r=Q˙rP˙FGP˙W=Q˙FGQ˙W
24 14 23 pm2.61dan KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGP˙FGP˙W=Q˙FGQ˙W