Metamath Proof Explorer


Theorem cdlemg39

Description: Eliminate =/= conditions from cdlemg38 . TODO: Would this better be done at cdlemg35 ? TODO: Fix comment. (Contributed by NM, 31-May-2013)

Ref Expression
Hypotheses cdlemg35.l ˙ = K
cdlemg35.j ˙ = join K
cdlemg35.m ˙ = meet K
cdlemg35.a A = Atoms K
cdlemg35.h H = LHyp K
cdlemg35.t T = LTrn K W
cdlemg35.r R = trL K W
Assertion cdlemg39 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q P ˙ F G P ˙ W = Q ˙ F G Q ˙ W

Proof

Step Hyp Ref Expression
1 cdlemg35.l ˙ = K
2 cdlemg35.j ˙ = join K
3 cdlemg35.m ˙ = meet K
4 cdlemg35.a A = Atoms K
5 cdlemg35.h H = LHyp K
6 cdlemg35.t T = LTrn K W
7 cdlemg35.r R = trL K W
8 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F = R G K HL W H
9 simpl2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F = R G P A ¬ P ˙ W
10 simpl2r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F = R G Q A ¬ Q ˙ W
11 simpl31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F = R G F T
12 simpl32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F = R G G T
13 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F = R G R F = R G
14 1 2 3 4 5 6 7 cdlemg15 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T R F = R G P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
15 8 9 10 11 12 13 14 syl321anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F = R G P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
16 simpll1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F R G F P = P K HL W H
17 simpll2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F R G F P = P P A ¬ P ˙ W Q A ¬ Q ˙ W
18 simpl31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F R G F T
19 18 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F R G F P = P F T
20 simpl32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F R G G T
21 20 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F R G F P = P G T
22 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F R G F P = P F P = P
23 1 2 3 4 5 6 7 cdlemg14f K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P = P P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
24 16 17 19 21 22 23 syl113anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F R G F P = P P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
25 simpll1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F R G G P = P K HL W H
26 simpll2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F R G G P = P P A ¬ P ˙ W Q A ¬ Q ˙ W
27 18 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F R G G P = P F T
28 20 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F R G G P = P G T
29 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F R G G P = P G P = P
30 1 2 3 4 5 6 7 cdlemg14g K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T G P = P P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
31 25 26 27 28 29 30 syl113anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F R G G P = P P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
32 simpll1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F R G F P P G P P K HL W H
33 simpl2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F R G P A ¬ P ˙ W
34 33 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F R G F P P G P P P A ¬ P ˙ W
35 simpl2r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F R G Q A ¬ Q ˙ W
36 35 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F R G F P P G P P Q A ¬ Q ˙ W
37 simpll3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F R G F P P G P P F T G T P Q
38 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F R G F P P G P P F P P G P P
39 simplr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F R G F P P G P P R F R G
40 1 2 3 4 5 6 7 cdlemg38 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P G P P R F R G P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
41 32 34 36 37 38 39 40 syl312anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F R G F P P G P P P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
42 24 31 41 pm2.61da2ne K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F R G P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
43 15 42 pm2.61dane K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q P ˙ F G P ˙ W = Q ˙ F G Q ˙ W