Metamath Proof Explorer


Theorem cdlemg15

Description: Eliminate the ( ( F( GP ) ) .\/ ( F( GQ ) ) ) =/= ( P .\/ Q ) condition from cdlemg13 . TODO: FIX COMMENT. (Contributed by NM, 25-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg15 KHLWHPA¬P˙WQA¬Q˙WFTGTRF=RGP˙FGP˙W=Q˙FGQ˙W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 simpl11 KHLWHPA¬P˙WQA¬Q˙WFTGTRF=RGFGP˙FGQ=P˙QKHLWH
9 simpl12 KHLWHPA¬P˙WQA¬Q˙WFTGTRF=RGFGP˙FGQ=P˙QPA¬P˙W
10 simpl13 KHLWHPA¬P˙WQA¬Q˙WFTGTRF=RGFGP˙FGQ=P˙QQA¬Q˙W
11 simpl2l KHLWHPA¬P˙WQA¬Q˙WFTGTRF=RGFGP˙FGQ=P˙QFT
12 simpl2r KHLWHPA¬P˙WQA¬Q˙WFTGTRF=RGFGP˙FGQ=P˙QGT
13 simpr KHLWHPA¬P˙WQA¬Q˙WFTGTRF=RGFGP˙FGQ=P˙QFGP˙FGQ=P˙Q
14 1 2 3 4 5 6 cdlemg8 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QP˙FGP˙W=Q˙FGQ˙W
15 8 9 10 11 12 13 14 syl132anc KHLWHPA¬P˙WQA¬Q˙WFTGTRF=RGFGP˙FGQ=P˙QP˙FGP˙W=Q˙FGQ˙W
16 simpl1 KHLWHPA¬P˙WQA¬Q˙WFTGTRF=RGFGP˙FGQP˙QKHLWHPA¬P˙WQA¬Q˙W
17 simpl2 KHLWHPA¬P˙WQA¬Q˙WFTGTRF=RGFGP˙FGQP˙QFTGT
18 simpl3 KHLWHPA¬P˙WQA¬Q˙WFTGTRF=RGFGP˙FGQP˙QRF=RG
19 simpr KHLWHPA¬P˙WQA¬Q˙WFTGTRF=RGFGP˙FGQP˙QFGP˙FGQP˙Q
20 1 2 3 4 5 6 7 cdlemg15a KHLWHPA¬P˙WQA¬Q˙WFTGTRF=RGFGP˙FGQP˙QP˙FGP˙W=Q˙FGQ˙W
21 16 17 18 19 20 syl112anc KHLWHPA¬P˙WQA¬Q˙WFTGTRF=RGFGP˙FGQP˙QP˙FGP˙W=Q˙FGQ˙W
22 15 21 pm2.61dane KHLWHPA¬P˙WQA¬Q˙WFTGTRF=RGP˙FGP˙W=Q˙FGQ˙W