Metamath Proof Explorer


Theorem cdlemg16

Description: Part of proof of Lemma G of Crawley p. 116; 2nd line p. 117, which says that (our) cdlemg10 "implies (2)" (of p. 116). No details are provided by the authors, so there may be a shorter proof; but ours requires the 14 lemmas, one using Desargues's law dalaw , in order to make this inference. This final step eliminates the ( RF ) =/= ( RG ) condition from cdlemg12 . TODO: FIX COMMENT. TODO: should we also eliminate P =/= Q here (or earlier)? Do it if we don't need to add it in for something else later. (Contributed by NM, 6-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
Assertion cdlemg16 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R F ˙ P ˙ Q ¬ R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q P ˙ F G P ˙ W = Q ˙ F G Q ˙ W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R F ˙ P ˙ Q ¬ R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q R F = R G K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
9 simpl21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R F ˙ P ˙ Q ¬ R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q R F = R G F T
10 simpl22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R F ˙ P ˙ Q ¬ R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q R F = R G G T
11 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R F ˙ P ˙ Q ¬ R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q R F = R G R F = R G
12 1 2 3 4 5 6 7 cdlemg15 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T R F = R G P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
13 8 9 10 11 12 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R F ˙ P ˙ Q ¬ R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q R F = R G P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
14 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R F ˙ P ˙ Q ¬ R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q R F R G K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
15 simpl2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R F ˙ P ˙ Q ¬ R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q R F R G F T G T P Q
16 simpl31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R F ˙ P ˙ Q ¬ R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q R F R G ¬ R F ˙ P ˙ Q
17 simpl32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R F ˙ P ˙ Q ¬ R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q R F R G ¬ R G ˙ P ˙ Q
18 16 17 jca K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R F ˙ P ˙ Q ¬ R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q R F R G ¬ R F ˙ P ˙ Q ¬ R G ˙ P ˙ Q
19 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R F ˙ P ˙ Q ¬ R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q R F R G R F R G
20 simpl33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R F ˙ P ˙ Q ¬ R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q R F R G F G P ˙ F G Q P ˙ Q
21 1 2 3 4 5 6 7 cdlemg12 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R F ˙ P ˙ Q ¬ R G ˙ P ˙ Q R F R G F G P ˙ F G Q P ˙ Q P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
22 14 15 18 19 20 21 syl113anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R F ˙ P ˙ Q ¬ R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q R F R G P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
23 13 22 pm2.61dane K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R F ˙ P ˙ Q ¬ R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q P ˙ F G P ˙ W = Q ˙ F G Q ˙ W