Metamath Proof Explorer


Theorem cdlemg12

Description: TODO: FIX COMMENT. (Contributed by NM, 6-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg12 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QP˙FGP˙W=Q˙FGQ˙W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 simp11l KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QKHL
9 8 hllatd KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QKLat
10 simp12l KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QPA
11 simp11 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QKHLWH
12 simp21 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QFT
13 simp22 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QGT
14 1 4 5 6 ltrncoat KHLWHFTGTPAFGPA
15 11 12 13 10 14 syl121anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QFGPA
16 eqid BaseK=BaseK
17 16 2 4 hlatjcl KHLPAFGPAP˙FGPBaseK
18 8 10 15 17 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QP˙FGPBaseK
19 simp13l KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QQA
20 1 4 5 6 ltrncoat KHLWHFTGTQAFGQA
21 11 12 13 19 20 syl121anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QFGQA
22 16 2 4 hlatjcl KHLQAFGQAQ˙FGQBaseK
23 8 19 21 22 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QQ˙FGQBaseK
24 16 3 latmcom KLatP˙FGPBaseKQ˙FGQBaseKP˙FGP˙Q˙FGQ=Q˙FGQ˙P˙FGP
25 9 18 23 24 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QP˙FGP˙Q˙FGQ=Q˙FGQ˙P˙FGP
26 1 2 3 4 5 6 7 cdlemg12g KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QP˙FGP˙Q˙FGQ=P˙FGP˙W
27 simp13 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QQA¬Q˙W
28 simp12 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QPA¬P˙W
29 simp23 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QPQ
30 29 necomd KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QQP
31 simp31l KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙Q¬RF˙P˙Q
32 2 4 hlatjcom KHLPAQAP˙Q=Q˙P
33 8 10 19 32 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QP˙Q=Q˙P
34 33 breq2d KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QRF˙P˙QRF˙Q˙P
35 31 34 mtbid KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙Q¬RF˙Q˙P
36 simp31r KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙Q¬RG˙P˙Q
37 33 breq2d KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QRG˙P˙QRG˙Q˙P
38 36 37 mtbid KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙Q¬RG˙Q˙P
39 35 38 jca KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙Q¬RF˙Q˙P¬RG˙Q˙P
40 simp32 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QRFRG
41 simp33 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QFGP˙FGQP˙Q
42 2 4 hlatjcom KHLFGPAFGQAFGP˙FGQ=FGQ˙FGP
43 8 15 21 42 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QFGP˙FGQ=FGQ˙FGP
44 41 43 33 3netr3d KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QFGQ˙FGPQ˙P
45 1 2 3 4 5 6 7 cdlemg12g KHLWHQA¬Q˙WPA¬P˙WFTGTQP¬RF˙Q˙P¬RG˙Q˙PRFRGFGQ˙FGPQ˙PQ˙FGQ˙P˙FGP=Q˙FGQ˙W
46 11 27 28 12 13 30 39 40 44 45 syl333anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QQ˙FGQ˙P˙FGP=Q˙FGQ˙W
47 25 26 46 3eqtr3d KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QP˙FGP˙W=Q˙FGQ˙W