Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|
2 |
|
cdlemg12.j |
|
3 |
|
cdlemg12.m |
|
4 |
|
cdlemg12.a |
|
5 |
|
cdlemg12.h |
|
6 |
|
cdlemg12.t |
|
7 |
|
cdlemg12b.r |
|
8 |
|
simp11l |
|
9 |
8
|
hllatd |
|
10 |
|
simp12l |
|
11 |
|
simp11 |
|
12 |
|
simp21 |
|
13 |
|
simp22 |
|
14 |
1 4 5 6
|
ltrncoat |
|
15 |
11 12 13 10 14
|
syl121anc |
|
16 |
|
eqid |
|
17 |
16 2 4
|
hlatjcl |
|
18 |
8 10 15 17
|
syl3anc |
|
19 |
|
simp13l |
|
20 |
1 4 5 6
|
ltrncoat |
|
21 |
11 12 13 19 20
|
syl121anc |
|
22 |
16 2 4
|
hlatjcl |
|
23 |
8 19 21 22
|
syl3anc |
|
24 |
16 3
|
latmcom |
|
25 |
9 18 23 24
|
syl3anc |
|
26 |
1 2 3 4 5 6 7
|
cdlemg12g |
|
27 |
|
simp13 |
|
28 |
|
simp12 |
|
29 |
|
simp23 |
|
30 |
29
|
necomd |
|
31 |
|
simp31l |
|
32 |
2 4
|
hlatjcom |
|
33 |
8 10 19 32
|
syl3anc |
|
34 |
33
|
breq2d |
|
35 |
31 34
|
mtbid |
|
36 |
|
simp31r |
|
37 |
33
|
breq2d |
|
38 |
36 37
|
mtbid |
|
39 |
35 38
|
jca |
|
40 |
|
simp32 |
|
41 |
|
simp33 |
|
42 |
2 4
|
hlatjcom |
|
43 |
8 15 21 42
|
syl3anc |
|
44 |
41 43 33
|
3netr3d |
|
45 |
1 2 3 4 5 6 7
|
cdlemg12g |
|
46 |
11 27 28 12 13 30 39 40 44 45
|
syl333anc |
|
47 |
25 26 46
|
3eqtr3d |
|