Metamath Proof Explorer


Theorem cdlemg13a

Description: TODO: FIX COMMENT. (Contributed by NM, 6-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg13a KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QP˙FGP=GP˙FGP

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 simp11l KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QKHL
9 simp12l KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QPA
10 simp11 KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QKHLWH
11 simp2r KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QGT
12 1 4 5 6 ltrnat KHLWHGTPAGPA
13 10 11 9 12 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QGPA
14 1 2 4 hlatlej1 KHLPAGPAP˙P˙GP
15 8 9 13 14 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QP˙P˙GP
16 simp32 KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QRF=RG
17 simp2l KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QFT
18 simp12 KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QPA¬P˙W
19 1 4 5 6 ltrnel KHLWHGTPA¬P˙WGPA¬GP˙W
20 10 11 18 19 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QGPA¬GP˙W
21 1 2 3 4 5 6 7 trlval2 KHLWHFTGPA¬GP˙WRF=GP˙FGP˙W
22 10 17 20 21 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QRF=GP˙FGP˙W
23 1 2 3 4 5 6 7 trlval2 KHLWHGTPA¬P˙WRG=P˙GP˙W
24 10 11 18 23 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QRG=P˙GP˙W
25 16 22 24 3eqtr3d KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QGP˙FGP˙W=P˙GP˙W
26 25 oveq2d KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QGP˙GP˙FGP˙W=GP˙P˙GP˙W
27 1 4 5 6 ltrncoat KHLWHFTGTPAFGPA
28 10 17 11 9 27 syl121anc KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QFGPA
29 eqid GP˙FGP˙W=GP˙FGP˙W
30 1 2 3 4 5 29 cdleme0cp KHLWHGPA¬GP˙WFGPAGP˙GP˙FGP˙W=GP˙FGP
31 10 20 28 30 syl12anc KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QGP˙GP˙FGP˙W=GP˙FGP
32 eqid P˙GP˙W=P˙GP˙W
33 1 2 3 4 5 32 cdleme0cq KHLWHPAGPA¬GP˙WGP˙P˙GP˙W=P˙GP
34 10 9 20 33 syl12anc KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QGP˙P˙GP˙W=P˙GP
35 26 31 34 3eqtr3rd KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QP˙GP=GP˙FGP
36 15 35 breqtrd KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QP˙GP˙FGP
37 1 2 4 hlatlej2 KHLGPAFGPAFGP˙GP˙FGP
38 8 13 28 37 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QFGP˙GP˙FGP
39 8 hllatd KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QKLat
40 eqid BaseK=BaseK
41 40 4 atbase PAPBaseK
42 9 41 syl KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QPBaseK
43 40 4 atbase FGPAFGPBaseK
44 28 43 syl KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QFGPBaseK
45 40 2 4 hlatjcl KHLGPAFGPAGP˙FGPBaseK
46 8 13 28 45 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QGP˙FGPBaseK
47 40 1 2 latjle12 KLatPBaseKFGPBaseKGP˙FGPBaseKP˙GP˙FGPFGP˙GP˙FGPP˙FGP˙GP˙FGP
48 39 42 44 46 47 syl13anc KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QP˙GP˙FGPFGP˙GP˙FGPP˙FGP˙GP˙FGP
49 36 38 48 mpbi2and KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QP˙FGP˙GP˙FGP
50 simp13 KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QQA¬Q˙W
51 simp33 KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QFGP˙FGQP˙Q
52 1 2 3 4 5 6 cdlemg11a KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QFGPP
53 10 18 50 17 11 51 52 syl123anc KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QFGPP
54 53 necomd KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QPFGP
55 1 2 4 ps-1 KHLPAFGPAPFGPGPAFGPAP˙FGP˙GP˙FGPP˙FGP=GP˙FGP
56 8 9 28 54 13 28 55 syl132anc KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QP˙FGP˙GP˙FGPP˙FGP=GP˙FGP
57 49 56 mpbid KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QP˙FGP=GP˙FGP