| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | cdlemg12.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | cdlemg12.m |  |-  ./\ = ( meet ` K ) | 
						
							| 4 |  | cdlemg12.a |  |-  A = ( Atoms ` K ) | 
						
							| 5 |  | cdlemg12.h |  |-  H = ( LHyp ` K ) | 
						
							| 6 |  | cdlemg12.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 7 |  | cdlemg12b.r |  |-  R = ( ( trL ` K ) ` W ) | 
						
							| 8 |  | simp11l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> K e. HL ) | 
						
							| 9 |  | simp12l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> P e. A ) | 
						
							| 10 |  | simp11 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 11 |  | simp2r |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> G e. T ) | 
						
							| 12 | 1 4 5 6 | ltrnat |  |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ P e. A ) -> ( G ` P ) e. A ) | 
						
							| 13 | 10 11 9 12 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( G ` P ) e. A ) | 
						
							| 14 | 1 2 4 | hlatlej1 |  |-  ( ( K e. HL /\ P e. A /\ ( G ` P ) e. A ) -> P .<_ ( P .\/ ( G ` P ) ) ) | 
						
							| 15 | 8 9 13 14 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> P .<_ ( P .\/ ( G ` P ) ) ) | 
						
							| 16 |  | simp32 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( R ` F ) = ( R ` G ) ) | 
						
							| 17 |  | simp2l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> F e. T ) | 
						
							| 18 |  | simp12 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( P e. A /\ -. P .<_ W ) ) | 
						
							| 19 | 1 4 5 6 | ltrnel |  |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) | 
						
							| 20 | 10 11 18 19 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) | 
						
							| 21 | 1 2 3 4 5 6 7 | trlval2 |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) -> ( R ` F ) = ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ W ) ) | 
						
							| 22 | 10 17 20 21 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( R ` F ) = ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ W ) ) | 
						
							| 23 | 1 2 3 4 5 6 7 | trlval2 |  |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` G ) = ( ( P .\/ ( G ` P ) ) ./\ W ) ) | 
						
							| 24 | 10 11 18 23 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( R ` G ) = ( ( P .\/ ( G ` P ) ) ./\ W ) ) | 
						
							| 25 | 16 22 24 | 3eqtr3d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( P .\/ ( G ` P ) ) ./\ W ) ) | 
						
							| 26 | 25 | oveq2d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( G ` P ) .\/ ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ W ) ) = ( ( G ` P ) .\/ ( ( P .\/ ( G ` P ) ) ./\ W ) ) ) | 
						
							| 27 | 1 4 5 6 | ltrncoat |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ P e. A ) -> ( F ` ( G ` P ) ) e. A ) | 
						
							| 28 | 10 17 11 9 27 | syl121anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( F ` ( G ` P ) ) e. A ) | 
						
							| 29 |  | eqid |  |-  ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ W ) | 
						
							| 30 | 1 2 3 4 5 29 | cdleme0cp |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) /\ ( F ` ( G ` P ) ) e. A ) ) -> ( ( G ` P ) .\/ ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ W ) ) = ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) | 
						
							| 31 | 10 20 28 30 | syl12anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( G ` P ) .\/ ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ W ) ) = ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) | 
						
							| 32 |  | eqid |  |-  ( ( P .\/ ( G ` P ) ) ./\ W ) = ( ( P .\/ ( G ` P ) ) ./\ W ) | 
						
							| 33 | 1 2 3 4 5 32 | cdleme0cq |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) ) -> ( ( G ` P ) .\/ ( ( P .\/ ( G ` P ) ) ./\ W ) ) = ( P .\/ ( G ` P ) ) ) | 
						
							| 34 | 10 9 20 33 | syl12anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( G ` P ) .\/ ( ( P .\/ ( G ` P ) ) ./\ W ) ) = ( P .\/ ( G ` P ) ) ) | 
						
							| 35 | 26 31 34 | 3eqtr3rd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( P .\/ ( G ` P ) ) = ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) | 
						
							| 36 | 15 35 | breqtrd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> P .<_ ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) | 
						
							| 37 | 1 2 4 | hlatlej2 |  |-  ( ( K e. HL /\ ( G ` P ) e. A /\ ( F ` ( G ` P ) ) e. A ) -> ( F ` ( G ` P ) ) .<_ ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) | 
						
							| 38 | 8 13 28 37 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( F ` ( G ` P ) ) .<_ ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) | 
						
							| 39 | 8 | hllatd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> K e. Lat ) | 
						
							| 40 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 41 | 40 4 | atbase |  |-  ( P e. A -> P e. ( Base ` K ) ) | 
						
							| 42 | 9 41 | syl |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> P e. ( Base ` K ) ) | 
						
							| 43 | 40 4 | atbase |  |-  ( ( F ` ( G ` P ) ) e. A -> ( F ` ( G ` P ) ) e. ( Base ` K ) ) | 
						
							| 44 | 28 43 | syl |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( F ` ( G ` P ) ) e. ( Base ` K ) ) | 
						
							| 45 | 40 2 4 | hlatjcl |  |-  ( ( K e. HL /\ ( G ` P ) e. A /\ ( F ` ( G ` P ) ) e. A ) -> ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) e. ( Base ` K ) ) | 
						
							| 46 | 8 13 28 45 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) e. ( Base ` K ) ) | 
						
							| 47 | 40 1 2 | latjle12 |  |-  ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ ( F ` ( G ` P ) ) e. ( Base ` K ) /\ ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) e. ( Base ` K ) ) ) -> ( ( P .<_ ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) /\ ( F ` ( G ` P ) ) .<_ ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) <-> ( P .\/ ( F ` ( G ` P ) ) ) .<_ ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) ) | 
						
							| 48 | 39 42 44 46 47 | syl13anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( P .<_ ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) /\ ( F ` ( G ` P ) ) .<_ ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) <-> ( P .\/ ( F ` ( G ` P ) ) ) .<_ ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) ) | 
						
							| 49 | 36 38 48 | mpbi2and |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( P .\/ ( F ` ( G ` P ) ) ) .<_ ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) | 
						
							| 50 |  | simp13 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) | 
						
							| 51 |  | simp33 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) | 
						
							| 52 | 1 2 3 4 5 6 | cdlemg11a |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( F ` ( G ` P ) ) =/= P ) | 
						
							| 53 | 10 18 50 17 11 51 52 | syl123anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( F ` ( G ` P ) ) =/= P ) | 
						
							| 54 | 53 | necomd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> P =/= ( F ` ( G ` P ) ) ) | 
						
							| 55 | 1 2 4 | ps-1 |  |-  ( ( K e. HL /\ ( P e. A /\ ( F ` ( G ` P ) ) e. A /\ P =/= ( F ` ( G ` P ) ) ) /\ ( ( G ` P ) e. A /\ ( F ` ( G ` P ) ) e. A ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) .<_ ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) <-> ( P .\/ ( F ` ( G ` P ) ) ) = ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) ) | 
						
							| 56 | 8 9 28 54 13 28 55 | syl132anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) .<_ ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) <-> ( P .\/ ( F ` ( G ` P ) ) ) = ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) ) | 
						
							| 57 | 49 56 | mpbid |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( P .\/ ( F ` ( G ` P ) ) ) = ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) |