Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|- .<_ = ( le ` K ) |
2 |
|
cdlemg12.j |
|- .\/ = ( join ` K ) |
3 |
|
cdlemg12.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdlemg12.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemg12.h |
|- H = ( LHyp ` K ) |
6 |
|
cdlemg12.t |
|- T = ( ( LTrn ` K ) ` W ) |
7 |
|
cdlemg12b.r |
|- R = ( ( trL ` K ) ` W ) |
8 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> K e. HL ) |
9 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> P e. A ) |
10 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( K e. HL /\ W e. H ) ) |
11 |
|
simp2r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> G e. T ) |
12 |
1 4 5 6
|
ltrnat |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ P e. A ) -> ( G ` P ) e. A ) |
13 |
10 11 9 12
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( G ` P ) e. A ) |
14 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ P e. A /\ ( G ` P ) e. A ) -> P .<_ ( P .\/ ( G ` P ) ) ) |
15 |
8 9 13 14
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> P .<_ ( P .\/ ( G ` P ) ) ) |
16 |
|
simp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( R ` F ) = ( R ` G ) ) |
17 |
|
simp2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> F e. T ) |
18 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
19 |
1 4 5 6
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) |
20 |
10 11 18 19
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) |
21 |
1 2 3 4 5 6 7
|
trlval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) -> ( R ` F ) = ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ W ) ) |
22 |
10 17 20 21
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( R ` F ) = ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ W ) ) |
23 |
1 2 3 4 5 6 7
|
trlval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` G ) = ( ( P .\/ ( G ` P ) ) ./\ W ) ) |
24 |
10 11 18 23
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( R ` G ) = ( ( P .\/ ( G ` P ) ) ./\ W ) ) |
25 |
16 22 24
|
3eqtr3d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( P .\/ ( G ` P ) ) ./\ W ) ) |
26 |
25
|
oveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( G ` P ) .\/ ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ W ) ) = ( ( G ` P ) .\/ ( ( P .\/ ( G ` P ) ) ./\ W ) ) ) |
27 |
1 4 5 6
|
ltrncoat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ P e. A ) -> ( F ` ( G ` P ) ) e. A ) |
28 |
10 17 11 9 27
|
syl121anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( F ` ( G ` P ) ) e. A ) |
29 |
|
eqid |
|- ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ W ) |
30 |
1 2 3 4 5 29
|
cdleme0cp |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) /\ ( F ` ( G ` P ) ) e. A ) ) -> ( ( G ` P ) .\/ ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ W ) ) = ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) |
31 |
10 20 28 30
|
syl12anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( G ` P ) .\/ ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ W ) ) = ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) |
32 |
|
eqid |
|- ( ( P .\/ ( G ` P ) ) ./\ W ) = ( ( P .\/ ( G ` P ) ) ./\ W ) |
33 |
1 2 3 4 5 32
|
cdleme0cq |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) ) -> ( ( G ` P ) .\/ ( ( P .\/ ( G ` P ) ) ./\ W ) ) = ( P .\/ ( G ` P ) ) ) |
34 |
10 9 20 33
|
syl12anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( G ` P ) .\/ ( ( P .\/ ( G ` P ) ) ./\ W ) ) = ( P .\/ ( G ` P ) ) ) |
35 |
26 31 34
|
3eqtr3rd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( P .\/ ( G ` P ) ) = ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) |
36 |
15 35
|
breqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> P .<_ ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) |
37 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ ( G ` P ) e. A /\ ( F ` ( G ` P ) ) e. A ) -> ( F ` ( G ` P ) ) .<_ ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) |
38 |
8 13 28 37
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( F ` ( G ` P ) ) .<_ ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) |
39 |
8
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> K e. Lat ) |
40 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
41 |
40 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
42 |
9 41
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> P e. ( Base ` K ) ) |
43 |
40 4
|
atbase |
|- ( ( F ` ( G ` P ) ) e. A -> ( F ` ( G ` P ) ) e. ( Base ` K ) ) |
44 |
28 43
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( F ` ( G ` P ) ) e. ( Base ` K ) ) |
45 |
40 2 4
|
hlatjcl |
|- ( ( K e. HL /\ ( G ` P ) e. A /\ ( F ` ( G ` P ) ) e. A ) -> ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) e. ( Base ` K ) ) |
46 |
8 13 28 45
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) e. ( Base ` K ) ) |
47 |
40 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ ( F ` ( G ` P ) ) e. ( Base ` K ) /\ ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) e. ( Base ` K ) ) ) -> ( ( P .<_ ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) /\ ( F ` ( G ` P ) ) .<_ ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) <-> ( P .\/ ( F ` ( G ` P ) ) ) .<_ ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) ) |
48 |
39 42 44 46 47
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( P .<_ ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) /\ ( F ` ( G ` P ) ) .<_ ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) <-> ( P .\/ ( F ` ( G ` P ) ) ) .<_ ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) ) |
49 |
36 38 48
|
mpbi2and |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( P .\/ ( F ` ( G ` P ) ) ) .<_ ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) |
50 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
51 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) |
52 |
1 2 3 4 5 6
|
cdlemg11a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( F ` ( G ` P ) ) =/= P ) |
53 |
10 18 50 17 11 51 52
|
syl123anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( F ` ( G ` P ) ) =/= P ) |
54 |
53
|
necomd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> P =/= ( F ` ( G ` P ) ) ) |
55 |
1 2 4
|
ps-1 |
|- ( ( K e. HL /\ ( P e. A /\ ( F ` ( G ` P ) ) e. A /\ P =/= ( F ` ( G ` P ) ) ) /\ ( ( G ` P ) e. A /\ ( F ` ( G ` P ) ) e. A ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) .<_ ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) <-> ( P .\/ ( F ` ( G ` P ) ) ) = ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) ) |
56 |
8 9 28 54 13 28 55
|
syl132anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) .<_ ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) <-> ( P .\/ ( F ` ( G ` P ) ) ) = ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) ) |
57 |
49 56
|
mpbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( R ` F ) = ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( P .\/ ( F ` ( G ` P ) ) ) = ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ) |