| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdlemg12.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | cdlemg12.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | cdlemg12.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 |  | cdlemg12.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 6 |  | cdlemg12.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | cdlemg12b.r | ⊢ 𝑅  =  ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | simp11l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  𝐾  ∈  HL ) | 
						
							| 9 |  | simp12l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 10 |  | simp11 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 11 |  | simp2r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  𝐺  ∈  𝑇 ) | 
						
							| 12 | 1 4 5 6 | ltrnat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐺  ∈  𝑇  ∧  𝑃  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑃 )  ∈  𝐴 ) | 
						
							| 13 | 10 11 9 12 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐺 ‘ 𝑃 )  ∈  𝐴 ) | 
						
							| 14 | 1 2 4 | hlatlej1 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  ( 𝐺 ‘ 𝑃 )  ∈  𝐴 )  →  𝑃  ≤  ( 𝑃  ∨  ( 𝐺 ‘ 𝑃 ) ) ) | 
						
							| 15 | 8 9 13 14 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ≤  ( 𝑃  ∨  ( 𝐺 ‘ 𝑃 ) ) ) | 
						
							| 16 |  | simp32 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) ) | 
						
							| 17 |  | simp2l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  𝐹  ∈  𝑇 ) | 
						
							| 18 |  | simp12 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) ) | 
						
							| 19 | 1 4 5 6 | ltrnel | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  ( ( 𝐺 ‘ 𝑃 )  ∈  𝐴  ∧  ¬  ( 𝐺 ‘ 𝑃 )  ≤  𝑊 ) ) | 
						
							| 20 | 10 11 18 19 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝐺 ‘ 𝑃 )  ∈  𝐴  ∧  ¬  ( 𝐺 ‘ 𝑃 )  ≤  𝑊 ) ) | 
						
							| 21 | 1 2 3 4 5 6 7 | trlval2 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  ( ( 𝐺 ‘ 𝑃 )  ∈  𝐴  ∧  ¬  ( 𝐺 ‘ 𝑃 )  ≤  𝑊 ) )  →  ( 𝑅 ‘ 𝐹 )  =  ( ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  𝑊 ) ) | 
						
							| 22 | 10 17 20 21 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅 ‘ 𝐹 )  =  ( ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  𝑊 ) ) | 
						
							| 23 | 1 2 3 4 5 6 7 | trlval2 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  ( 𝑅 ‘ 𝐺 )  =  ( ( 𝑃  ∨  ( 𝐺 ‘ 𝑃 ) )  ∧  𝑊 ) ) | 
						
							| 24 | 10 11 18 23 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅 ‘ 𝐺 )  =  ( ( 𝑃  ∨  ( 𝐺 ‘ 𝑃 ) )  ∧  𝑊 ) ) | 
						
							| 25 | 16 22 24 | 3eqtr3d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  𝑊 )  =  ( ( 𝑃  ∨  ( 𝐺 ‘ 𝑃 ) )  ∧  𝑊 ) ) | 
						
							| 26 | 25 | oveq2d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝐺 ‘ 𝑃 )  ∨  ( ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  𝑊 ) )  =  ( ( 𝐺 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  ( 𝐺 ‘ 𝑃 ) )  ∧  𝑊 ) ) ) | 
						
							| 27 | 1 4 5 6 | ltrncoat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑃  ∈  𝐴 )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  𝐴 ) | 
						
							| 28 | 10 17 11 9 27 | syl121anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  𝐴 ) | 
						
							| 29 |  | eqid | ⊢ ( ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  𝑊 )  =  ( ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  𝑊 ) | 
						
							| 30 | 1 2 3 4 5 29 | cdleme0cp | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( ( 𝐺 ‘ 𝑃 )  ∈  𝐴  ∧  ¬  ( 𝐺 ‘ 𝑃 )  ≤  𝑊 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  𝐴 ) )  →  ( ( 𝐺 ‘ 𝑃 )  ∨  ( ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  𝑊 ) )  =  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) | 
						
							| 31 | 10 20 28 30 | syl12anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝐺 ‘ 𝑃 )  ∨  ( ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  𝑊 ) )  =  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) | 
						
							| 32 |  | eqid | ⊢ ( ( 𝑃  ∨  ( 𝐺 ‘ 𝑃 ) )  ∧  𝑊 )  =  ( ( 𝑃  ∨  ( 𝐺 ‘ 𝑃 ) )  ∧  𝑊 ) | 
						
							| 33 | 1 2 3 4 5 32 | cdleme0cq | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ( ( 𝐺 ‘ 𝑃 )  ∈  𝐴  ∧  ¬  ( 𝐺 ‘ 𝑃 )  ≤  𝑊 ) ) )  →  ( ( 𝐺 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  ( 𝐺 ‘ 𝑃 ) )  ∧  𝑊 ) )  =  ( 𝑃  ∨  ( 𝐺 ‘ 𝑃 ) ) ) | 
						
							| 34 | 10 9 20 33 | syl12anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝐺 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  ( 𝐺 ‘ 𝑃 ) )  ∧  𝑊 ) )  =  ( 𝑃  ∨  ( 𝐺 ‘ 𝑃 ) ) ) | 
						
							| 35 | 26 31 34 | 3eqtr3rd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∨  ( 𝐺 ‘ 𝑃 ) )  =  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) | 
						
							| 36 | 15 35 | breqtrd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ≤  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) | 
						
							| 37 | 1 2 4 | hlatlej2 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝐺 ‘ 𝑃 )  ∈  𝐴  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  𝐴 )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ≤  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) | 
						
							| 38 | 8 13 28 37 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ≤  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) | 
						
							| 39 | 8 | hllatd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  𝐾  ∈  Lat ) | 
						
							| 40 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 41 | 40 4 | atbase | ⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 42 | 9 41 | syl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 43 | 40 4 | atbase | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  𝐴  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 44 | 28 43 | syl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 45 | 40 2 4 | hlatjcl | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝐺 ‘ 𝑃 )  ∈  𝐴  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  𝐴 )  →  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 46 | 8 13 28 45 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 47 | 40 1 2 | latjle12 | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑃  ≤  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ≤  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) )  ↔  ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ≤  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) ) | 
						
							| 48 | 39 42 44 46 47 | syl13anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑃  ≤  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ≤  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) )  ↔  ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ≤  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) ) | 
						
							| 49 | 36 38 48 | mpbi2and | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ≤  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) | 
						
							| 50 |  | simp13 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) | 
						
							| 51 |  | simp33 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 52 | 1 2 3 4 5 6 | cdlemg11a | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ≠  𝑃 ) | 
						
							| 53 | 10 18 50 17 11 51 52 | syl123anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ≠  𝑃 ) | 
						
							| 54 | 53 | necomd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ≠  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) | 
						
							| 55 | 1 2 4 | ps-1 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  𝐴  ∧  𝑃  ≠  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  ( ( 𝐺 ‘ 𝑃 )  ∈  𝐴  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  𝐴 ) )  →  ( ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ≤  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ↔  ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  =  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) ) | 
						
							| 56 | 8 9 28 54 13 28 55 | syl132anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ≤  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ↔  ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  =  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) ) | 
						
							| 57 | 49 56 | mpbid | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  =  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) |