Metamath Proof Explorer


Theorem cdlemg13a

Description: TODO: FIX COMMENT. (Contributed by NM, 6-May-2013)

Ref Expression
Hypotheses cdlemg12.l = ( le ‘ 𝐾 )
cdlemg12.j = ( join ‘ 𝐾 )
cdlemg12.m = ( meet ‘ 𝐾 )
cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemg13a ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) = ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemg12.l = ( le ‘ 𝐾 )
2 cdlemg12.j = ( join ‘ 𝐾 )
3 cdlemg12.m = ( meet ‘ 𝐾 )
4 cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝐾 ∈ HL )
9 simp12l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝑃𝐴 )
10 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
11 simp2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝐺𝑇 )
12 1 4 5 6 ltrnat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇𝑃𝐴 ) → ( 𝐺𝑃 ) ∈ 𝐴 )
13 10 11 9 12 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝐺𝑃 ) ∈ 𝐴 )
14 1 2 4 hlatlej1 ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ∧ ( 𝐺𝑃 ) ∈ 𝐴 ) → 𝑃 ( 𝑃 ( 𝐺𝑃 ) ) )
15 8 9 13 14 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝑃 ( 𝑃 ( 𝐺𝑃 ) ) )
16 simp32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝑅𝐹 ) = ( 𝑅𝐺 ) )
17 simp2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝐹𝑇 )
18 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
19 1 4 5 6 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) )
20 10 11 18 19 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) )
21 1 2 3 4 5 6 7 trlval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) ) → ( 𝑅𝐹 ) = ( ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) )
22 10 17 20 21 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝑅𝐹 ) = ( ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) )
23 1 2 3 4 5 6 7 trlval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑅𝐺 ) = ( ( 𝑃 ( 𝐺𝑃 ) ) 𝑊 ) )
24 10 11 18 23 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝑅𝐺 ) = ( ( 𝑃 ( 𝐺𝑃 ) ) 𝑊 ) )
25 16 22 24 3eqtr3d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑃 ( 𝐺𝑃 ) ) 𝑊 ) )
26 25 oveq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝐺𝑃 ) ( ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) ) = ( ( 𝐺𝑃 ) ( ( 𝑃 ( 𝐺𝑃 ) ) 𝑊 ) ) )
27 1 4 5 6 ltrncoat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝐴 ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 )
28 10 17 11 9 27 syl121anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 )
29 eqid ( ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 )
30 1 2 3 4 5 29 cdleme0cp ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 ) ) → ( ( 𝐺𝑃 ) ( ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) ) = ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) )
31 10 20 28 30 syl12anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝐺𝑃 ) ( ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) ) = ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) )
32 eqid ( ( 𝑃 ( 𝐺𝑃 ) ) 𝑊 ) = ( ( 𝑃 ( 𝐺𝑃 ) ) 𝑊 )
33 1 2 3 4 5 32 cdleme0cq ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) ) ) → ( ( 𝐺𝑃 ) ( ( 𝑃 ( 𝐺𝑃 ) ) 𝑊 ) ) = ( 𝑃 ( 𝐺𝑃 ) ) )
34 10 9 20 33 syl12anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝐺𝑃 ) ( ( 𝑃 ( 𝐺𝑃 ) ) 𝑊 ) ) = ( 𝑃 ( 𝐺𝑃 ) ) )
35 26 31 34 3eqtr3rd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝑃 ( 𝐺𝑃 ) ) = ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) )
36 15 35 breqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝑃 ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) )
37 1 2 4 hlatlej2 ( ( 𝐾 ∈ HL ∧ ( 𝐺𝑃 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) )
38 8 13 28 37 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) )
39 8 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝐾 ∈ Lat )
40 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
41 40 4 atbase ( 𝑃𝐴𝑃 ∈ ( Base ‘ 𝐾 ) )
42 9 41 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) )
43 40 4 atbase ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ ( Base ‘ 𝐾 ) )
44 28 43 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ ( Base ‘ 𝐾 ) )
45 40 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ ( 𝐺𝑃 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 ) → ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) )
46 8 13 28 45 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) )
47 40 1 2 latjle12 ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑃 ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ) ↔ ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ) )
48 39 42 44 46 47 syl13anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝑃 ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ) ↔ ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ) )
49 36 38 48 mpbi2and ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) )
50 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
51 simp33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) )
52 1 2 3 4 5 6 cdlemg11a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 )
53 10 18 50 17 11 51 52 syl123anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 )
54 53 necomd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝑃 ≠ ( 𝐹 ‘ ( 𝐺𝑃 ) ) )
55 1 2 4 ps-1 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴𝑃 ≠ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ∧ ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ↔ ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) = ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ) )
56 8 9 28 54 13 28 55 syl132anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ↔ ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) = ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ) )
57 49 56 mpbid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) = ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) )