Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemg12.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdlemg12.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdlemg12.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemg12.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemg12.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemg12b.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐾 ∈ HL ) |
9 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ∈ 𝐴 ) |
10 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
11 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐺 ∈ 𝑇 ) |
12 |
1 4 5 6
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ) |
13 |
10 11 9 12
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ) |
14 |
1 2 4
|
hlatlej1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ) → 𝑃 ≤ ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ) |
15 |
8 9 13 14
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ≤ ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ) |
16 |
|
simp32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) |
17 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐹 ∈ 𝑇 ) |
18 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
19 |
1 4 5 6
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺 ‘ 𝑃 ) ≤ 𝑊 ) ) |
20 |
10 11 18 19
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺 ‘ 𝑃 ) ≤ 𝑊 ) ) |
21 |
1 2 3 4 5 6 7
|
trlval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺 ‘ 𝑃 ) ≤ 𝑊 ) ) → ( 𝑅 ‘ 𝐹 ) = ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) |
22 |
10 17 20 21
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ‘ 𝐹 ) = ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) |
23 |
1 2 3 4 5 6 7
|
trlval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ 𝐺 ) = ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
24 |
10 11 18 23
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ‘ 𝐺 ) = ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
25 |
16 22 24
|
3eqtr3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) = ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
26 |
25
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝐺 ‘ 𝑃 ) ∨ ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) = ( ( 𝐺 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ) ) |
27 |
1 4 5 6
|
ltrncoat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∈ 𝐴 ) |
28 |
10 17 11 9 27
|
syl121anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∈ 𝐴 ) |
29 |
|
eqid |
⊢ ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) = ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) |
30 |
1 2 3 4 5 29
|
cdleme0cp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺 ‘ 𝑃 ) ≤ 𝑊 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∈ 𝐴 ) ) → ( ( 𝐺 ‘ 𝑃 ) ∨ ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) = ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) |
31 |
10 20 28 30
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝐺 ‘ 𝑃 ) ∨ ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) = ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) |
32 |
|
eqid |
⊢ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) = ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) |
33 |
1 2 3 4 5 32
|
cdleme0cq |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ( ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺 ‘ 𝑃 ) ≤ 𝑊 ) ) ) → ( ( 𝐺 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ) = ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ) |
34 |
10 9 20 33
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝐺 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ) = ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ) |
35 |
26 31 34
|
3eqtr3rd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) = ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) |
36 |
15 35
|
breqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ≤ ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) |
37 |
1 2 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ≤ ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) |
38 |
8 13 28 37
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ≤ ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) |
39 |
8
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐾 ∈ Lat ) |
40 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
41 |
40 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
42 |
9 41
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
43 |
40 4
|
atbase |
⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∈ 𝐴 → ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) |
44 |
28 43
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) |
45 |
40 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
46 |
8 13 28 45
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
47 |
40 1 2
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑃 ≤ ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ≤ ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) ↔ ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ≤ ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) ) |
48 |
39 42 44 46 47
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑃 ≤ ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ≤ ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) ↔ ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ≤ ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) ) |
49 |
36 38 48
|
mpbi2and |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ≤ ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) |
50 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
51 |
|
simp33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) |
52 |
1 2 3 4 5 6
|
cdlemg11a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ≠ 𝑃 ) |
53 |
10 18 50 17 11 51 52
|
syl123anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ≠ 𝑃 ) |
54 |
53
|
necomd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ≠ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) |
55 |
1 2 4
|
ps-1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∈ 𝐴 ∧ 𝑃 ≠ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ ( ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∈ 𝐴 ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ≤ ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ↔ ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) = ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) ) |
56 |
8 9 28 54 13 28 55
|
syl132anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ≤ ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ↔ ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) = ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) ) |
57 |
49 56
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) = ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) |