Metamath Proof Explorer


Theorem cdlemg13

Description: TODO: FIX COMMENT. (Contributed by NM, 6-May-2013)

Ref Expression
Hypotheses cdlemg12.l = ( le ‘ 𝐾 )
cdlemg12.j = ( join ‘ 𝐾 )
cdlemg12.m = ( meet ‘ 𝐾 )
cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemg13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )

Proof

Step Hyp Ref Expression
1 cdlemg12.l = ( le ‘ 𝐾 )
2 cdlemg12.j = ( join ‘ 𝐾 )
3 cdlemg12.m = ( meet ‘ 𝐾 )
4 cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 simp2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝐹𝑇 )
10 simp2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝐺𝑇 )
11 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
12 1 4 5 6 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) )
13 8 10 11 12 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) )
14 1 2 3 4 5 6 7 trlval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) ) → ( 𝑅𝐹 ) = ( ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) )
15 8 9 13 14 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝑅𝐹 ) = ( ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) )
16 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
17 1 4 5 6 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝐺𝑄 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑄 ) 𝑊 ) )
18 8 10 16 17 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝐺𝑄 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑄 ) 𝑊 ) )
19 1 2 3 4 5 6 7 trlval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝐺𝑄 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑄 ) 𝑊 ) ) → ( 𝑅𝐹 ) = ( ( ( 𝐺𝑄 ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )
20 8 9 18 19 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝑅𝐹 ) = ( ( ( 𝐺𝑄 ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )
21 15 20 eqtr3d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( ( 𝐺𝑄 ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )
22 1 2 3 4 5 6 7 cdlemg13a ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) = ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) )
23 22 oveq1d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) )
24 simp2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝐹𝑇𝐺𝑇 ) )
25 simp31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝐹𝑃 ) ≠ 𝑃 )
26 1 4 5 6 ltrnatneq ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → ( 𝐹𝑄 ) ≠ 𝑄 )
27 8 9 11 16 25 26 syl131anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝐹𝑄 ) ≠ 𝑄 )
28 simp32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝑅𝐹 ) = ( 𝑅𝐺 ) )
29 simp33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) )
30 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝐾 ∈ HL )
31 simp12l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝑃𝐴 )
32 1 4 5 6 ltrncoat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝐴 ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 )
33 8 24 31 32 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 )
34 simp13l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝑄𝐴 )
35 1 4 5 6 ltrncoat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑄𝐴 ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) ∈ 𝐴 )
36 8 24 34 35 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) ∈ 𝐴 )
37 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺𝑄 ) ) ∈ 𝐴 ) → ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( ( 𝐹 ‘ ( 𝐺𝑄 ) ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) )
38 30 33 36 37 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( ( 𝐹 ‘ ( 𝐺𝑄 ) ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) )
39 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄 ) = ( 𝑄 𝑃 ) )
40 30 31 34 39 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝑃 𝑄 ) = ( 𝑄 𝑃 ) )
41 29 38 40 3netr3d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝐹 ‘ ( 𝐺𝑄 ) ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ≠ ( 𝑄 𝑃 ) )
42 1 2 3 4 5 6 7 cdlemg13a ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑄 ) ≠ 𝑄 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑄 ) ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ≠ ( 𝑄 𝑃 ) ) ) → ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( ( 𝐺𝑄 ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) )
43 8 16 11 24 27 28 41 42 syl313anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( ( 𝐺𝑄 ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) )
44 43 oveq1d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) = ( ( ( 𝐺𝑄 ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )
45 21 23 44 3eqtr4d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )