| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdlemg12.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | cdlemg12.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | cdlemg12.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 |  | cdlemg12.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 6 |  | cdlemg12.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | cdlemg12b.r | ⊢ 𝑅  =  ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | simp11 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 9 |  | simp2l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  𝐹  ∈  𝑇 ) | 
						
							| 10 |  | simp2r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  𝐺  ∈  𝑇 ) | 
						
							| 11 |  | simp12 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) ) | 
						
							| 12 | 1 4 5 6 | ltrnel | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  ( ( 𝐺 ‘ 𝑃 )  ∈  𝐴  ∧  ¬  ( 𝐺 ‘ 𝑃 )  ≤  𝑊 ) ) | 
						
							| 13 | 8 10 11 12 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝐺 ‘ 𝑃 )  ∈  𝐴  ∧  ¬  ( 𝐺 ‘ 𝑃 )  ≤  𝑊 ) ) | 
						
							| 14 | 1 2 3 4 5 6 7 | trlval2 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  ( ( 𝐺 ‘ 𝑃 )  ∈  𝐴  ∧  ¬  ( 𝐺 ‘ 𝑃 )  ≤  𝑊 ) )  →  ( 𝑅 ‘ 𝐹 )  =  ( ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  𝑊 ) ) | 
						
							| 15 | 8 9 13 14 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅 ‘ 𝐹 )  =  ( ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  𝑊 ) ) | 
						
							| 16 |  | simp13 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) | 
						
							| 17 | 1 4 5 6 | ltrnel | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐺  ∈  𝑇  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( ( 𝐺 ‘ 𝑄 )  ∈  𝐴  ∧  ¬  ( 𝐺 ‘ 𝑄 )  ≤  𝑊 ) ) | 
						
							| 18 | 8 10 16 17 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝐺 ‘ 𝑄 )  ∈  𝐴  ∧  ¬  ( 𝐺 ‘ 𝑄 )  ≤  𝑊 ) ) | 
						
							| 19 | 1 2 3 4 5 6 7 | trlval2 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  ( ( 𝐺 ‘ 𝑄 )  ∈  𝐴  ∧  ¬  ( 𝐺 ‘ 𝑄 )  ≤  𝑊 ) )  →  ( 𝑅 ‘ 𝐹 )  =  ( ( ( 𝐺 ‘ 𝑄 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ∧  𝑊 ) ) | 
						
							| 20 | 8 9 18 19 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅 ‘ 𝐹 )  =  ( ( ( 𝐺 ‘ 𝑄 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ∧  𝑊 ) ) | 
						
							| 21 | 15 20 | eqtr3d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  𝑊 )  =  ( ( ( 𝐺 ‘ 𝑄 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ∧  𝑊 ) ) | 
						
							| 22 | 1 2 3 4 5 6 7 | cdlemg13a | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  =  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) | 
						
							| 23 | 22 | oveq1d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  𝑊 )  =  ( ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  𝑊 ) ) | 
						
							| 24 |  | simp2 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) ) | 
						
							| 25 |  | simp31 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) | 
						
							| 26 | 1 4 5 6 | ltrnatneq | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 )  →  ( 𝐹 ‘ 𝑄 )  ≠  𝑄 ) | 
						
							| 27 | 8 9 11 16 25 26 | syl131anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐹 ‘ 𝑄 )  ≠  𝑄 ) | 
						
							| 28 |  | simp32 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) ) | 
						
							| 29 |  | simp33 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 30 |  | simp11l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  𝐾  ∈  HL ) | 
						
							| 31 |  | simp12l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 32 | 1 4 5 6 | ltrncoat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑃  ∈  𝐴 )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  𝐴 ) | 
						
							| 33 | 8 24 31 32 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  𝐴 ) | 
						
							| 34 |  | simp13l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 35 | 1 4 5 6 | ltrncoat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑄  ∈  𝐴 )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∈  𝐴 ) | 
						
							| 36 | 8 24 34 35 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∈  𝐴 ) | 
						
							| 37 | 2 4 | hlatjcom | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  𝐴  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∈  𝐴 )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  =  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) | 
						
							| 38 | 30 33 36 37 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  =  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) | 
						
							| 39 | 2 4 | hlatjcom | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 40 | 30 31 34 39 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 41 | 29 38 40 | 3netr3d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ≠  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 42 | 1 2 3 4 5 6 7 | cdlemg13a | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑄 )  ≠  𝑄  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ≠  ( 𝑄  ∨  𝑃 ) ) )  →  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  =  ( ( 𝐺 ‘ 𝑄 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ) | 
						
							| 43 | 8 16 11 24 27 28 41 42 | syl313anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  =  ( ( 𝐺 ‘ 𝑄 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ) | 
						
							| 44 | 43 | oveq1d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ∧  𝑊 )  =  ( ( ( 𝐺 ‘ 𝑄 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ∧  𝑊 ) ) | 
						
							| 45 | 21 23 44 | 3eqtr4d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  𝑊 )  =  ( ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ∧  𝑊 ) ) |