Metamath Proof Explorer


Theorem cdlemg13

Description: TODO: FIX COMMENT. (Contributed by NM, 6-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg13 KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QP˙FGP˙W=Q˙FGQ˙W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 simp11 KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QKHLWH
9 simp2l KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QFT
10 simp2r KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QGT
11 simp12 KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QPA¬P˙W
12 1 4 5 6 ltrnel KHLWHGTPA¬P˙WGPA¬GP˙W
13 8 10 11 12 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QGPA¬GP˙W
14 1 2 3 4 5 6 7 trlval2 KHLWHFTGPA¬GP˙WRF=GP˙FGP˙W
15 8 9 13 14 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QRF=GP˙FGP˙W
16 simp13 KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QQA¬Q˙W
17 1 4 5 6 ltrnel KHLWHGTQA¬Q˙WGQA¬GQ˙W
18 8 10 16 17 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QGQA¬GQ˙W
19 1 2 3 4 5 6 7 trlval2 KHLWHFTGQA¬GQ˙WRF=GQ˙FGQ˙W
20 8 9 18 19 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QRF=GQ˙FGQ˙W
21 15 20 eqtr3d KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QGP˙FGP˙W=GQ˙FGQ˙W
22 1 2 3 4 5 6 7 cdlemg13a KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QP˙FGP=GP˙FGP
23 22 oveq1d KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QP˙FGP˙W=GP˙FGP˙W
24 simp2 KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QFTGT
25 simp31 KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QFPP
26 1 4 5 6 ltrnatneq KHLWHFTPA¬P˙WQA¬Q˙WFPPFQQ
27 8 9 11 16 25 26 syl131anc KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QFQQ
28 simp32 KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QRF=RG
29 simp33 KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QFGP˙FGQP˙Q
30 simp11l KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QKHL
31 simp12l KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QPA
32 1 4 5 6 ltrncoat KHLWHFTGTPAFGPA
33 8 24 31 32 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QFGPA
34 simp13l KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QQA
35 1 4 5 6 ltrncoat KHLWHFTGTQAFGQA
36 8 24 34 35 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QFGQA
37 2 4 hlatjcom KHLFGPAFGQAFGP˙FGQ=FGQ˙FGP
38 30 33 36 37 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QFGP˙FGQ=FGQ˙FGP
39 2 4 hlatjcom KHLPAQAP˙Q=Q˙P
40 30 31 34 39 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QP˙Q=Q˙P
41 29 38 40 3netr3d KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QFGQ˙FGPQ˙P
42 1 2 3 4 5 6 7 cdlemg13a KHLWHQA¬Q˙WPA¬P˙WFTGTFQQRF=RGFGQ˙FGPQ˙PQ˙FGQ=GQ˙FGQ
43 8 16 11 24 27 28 41 42 syl313anc KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QQ˙FGQ=GQ˙FGQ
44 43 oveq1d KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QQ˙FGQ˙W=GQ˙FGQ˙W
45 21 23 44 3eqtr4d KHLWHPA¬P˙WQA¬Q˙WFTGTFPPRF=RGFGP˙FGQP˙QP˙FGP˙W=Q˙FGQ˙W