Metamath Proof Explorer


Theorem cdleme0cq

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 25-Apr-2013)

Ref Expression
Hypotheses cdleme0.l ˙ = K
cdleme0.j ˙ = join K
cdleme0.m ˙ = meet K
cdleme0.a A = Atoms K
cdleme0.h H = LHyp K
cdleme0.u U = P ˙ Q ˙ W
Assertion cdleme0cq K HL W H P A Q A ¬ Q ˙ W Q ˙ U = P ˙ Q

Proof

Step Hyp Ref Expression
1 cdleme0.l ˙ = K
2 cdleme0.j ˙ = join K
3 cdleme0.m ˙ = meet K
4 cdleme0.a A = Atoms K
5 cdleme0.h H = LHyp K
6 cdleme0.u U = P ˙ Q ˙ W
7 6 oveq2i Q ˙ U = Q ˙ P ˙ Q ˙ W
8 simpll K HL W H P A Q A ¬ Q ˙ W K HL
9 simprrl K HL W H P A Q A ¬ Q ˙ W Q A
10 hllat K HL K Lat
11 10 ad2antrr K HL W H P A Q A ¬ Q ˙ W K Lat
12 eqid Base K = Base K
13 12 4 atbase P A P Base K
14 13 ad2antrl K HL W H P A Q A ¬ Q ˙ W P Base K
15 12 4 atbase Q A Q Base K
16 9 15 syl K HL W H P A Q A ¬ Q ˙ W Q Base K
17 12 2 latjcl K Lat P Base K Q Base K P ˙ Q Base K
18 11 14 16 17 syl3anc K HL W H P A Q A ¬ Q ˙ W P ˙ Q Base K
19 12 5 lhpbase W H W Base K
20 19 ad2antlr K HL W H P A Q A ¬ Q ˙ W W Base K
21 12 1 2 latlej2 K Lat P Base K Q Base K Q ˙ P ˙ Q
22 11 14 16 21 syl3anc K HL W H P A Q A ¬ Q ˙ W Q ˙ P ˙ Q
23 12 1 2 3 4 atmod3i1 K HL Q A P ˙ Q Base K W Base K Q ˙ P ˙ Q Q ˙ P ˙ Q ˙ W = P ˙ Q ˙ Q ˙ W
24 8 9 18 20 22 23 syl131anc K HL W H P A Q A ¬ Q ˙ W Q ˙ P ˙ Q ˙ W = P ˙ Q ˙ Q ˙ W
25 eqid 1. K = 1. K
26 1 2 25 4 5 lhpjat2 K HL W H Q A ¬ Q ˙ W Q ˙ W = 1. K
27 26 adantrl K HL W H P A Q A ¬ Q ˙ W Q ˙ W = 1. K
28 27 oveq2d K HL W H P A Q A ¬ Q ˙ W P ˙ Q ˙ Q ˙ W = P ˙ Q ˙ 1. K
29 hlol K HL K OL
30 29 ad2antrr K HL W H P A Q A ¬ Q ˙ W K OL
31 12 3 25 olm11 K OL P ˙ Q Base K P ˙ Q ˙ 1. K = P ˙ Q
32 30 18 31 syl2anc K HL W H P A Q A ¬ Q ˙ W P ˙ Q ˙ 1. K = P ˙ Q
33 24 28 32 3eqtrd K HL W H P A Q A ¬ Q ˙ W Q ˙ P ˙ Q ˙ W = P ˙ Q
34 7 33 eqtrid K HL W H P A Q A ¬ Q ˙ W Q ˙ U = P ˙ Q