Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|
2 |
|
cdlemg12.j |
|
3 |
|
cdlemg12.m |
|
4 |
|
cdlemg12.a |
|
5 |
|
cdlemg12.h |
|
6 |
|
cdlemg12.t |
|
7 |
|
cdlemg12b.r |
|
8 |
|
simp11l |
|
9 |
|
hlop |
|
10 |
8 9
|
syl |
|
11 |
8
|
hllatd |
|
12 |
|
simp12l |
|
13 |
|
simp11 |
|
14 |
|
simp21 |
|
15 |
|
simp22 |
|
16 |
1 4 5 6
|
ltrncoat |
|
17 |
13 14 15 12 16
|
syl121anc |
|
18 |
|
eqid |
|
19 |
18 2 4
|
hlatjcl |
|
20 |
8 12 17 19
|
syl3anc |
|
21 |
|
simp13l |
|
22 |
1 4 5 6
|
ltrncoat |
|
23 |
13 14 15 21 22
|
syl121anc |
|
24 |
18 2 4
|
hlatjcl |
|
25 |
8 21 23 24
|
syl3anc |
|
26 |
18 3
|
latmcl |
|
27 |
11 20 25 26
|
syl3anc |
|
28 |
|
simp12 |
|
29 |
|
simp13 |
|
30 |
|
simp33 |
|
31 |
1 2 3 4 5 6
|
cdlemg11a |
|
32 |
31
|
necomd |
|
33 |
13 28 29 14 15 30 32
|
syl123anc |
|
34 |
1 2 3 4 5
|
lhpat |
|
35 |
13 28 17 33 34
|
syl112anc |
|
36 |
2 4
|
hlatjcom |
|
37 |
8 12 17 36
|
syl3anc |
|
38 |
2 4
|
hlatjcom |
|
39 |
8 21 23 38
|
syl3anc |
|
40 |
37 39
|
oveq12d |
|
41 |
|
simp1 |
|
42 |
|
simp2 |
|
43 |
|
simp31l |
|
44 |
|
simp31r |
|
45 |
|
simp32 |
|
46 |
|
eqid |
|
47 |
1 2 3 4 5 6 7 46
|
cdlemg12e |
|
48 |
41 42 43 44 45 47
|
syl113anc |
|
49 |
40 48
|
eqnetrd |
|
50 |
1 2 3 4 5 6 7
|
cdlemg12f |
|
51 |
18 1 46 4
|
leat2 |
|
52 |
10 27 35 49 50 51
|
syl32anc |
|