| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdlemg12.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | cdlemg12.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | cdlemg12.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 |  | cdlemg12.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 6 |  | cdlemg12.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | cdlemg12b.r | ⊢ 𝑅  =  ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | simp11l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  𝐾  ∈  HL ) | 
						
							| 9 | 8 | hllatd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  𝐾  ∈  Lat ) | 
						
							| 10 |  | simp12l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 11 |  | simp11 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 12 |  | simp21 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  𝐹  ∈  𝑇 ) | 
						
							| 13 |  | simp22 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  𝐺  ∈  𝑇 ) | 
						
							| 14 | 1 4 5 6 | ltrncoat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑃  ∈  𝐴 )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  𝐴 ) | 
						
							| 15 | 11 12 13 10 14 | syl121anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  𝐴 ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 17 | 16 2 4 | hlatjcl | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  𝐴 )  →  ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 18 | 8 10 15 17 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 19 |  | simp13l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 20 | 1 4 5 6 | ltrncoat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑄  ∈  𝐴 )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∈  𝐴 ) | 
						
							| 21 | 11 12 13 19 20 | syl121anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∈  𝐴 ) | 
						
							| 22 | 16 2 4 | hlatjcl | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∈  𝐴 )  →  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 23 | 8 19 21 22 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 24 | 16 3 | latmcom | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) )  =  ( ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) ) | 
						
							| 25 | 9 18 23 24 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) )  =  ( ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) ) | 
						
							| 26 | 1 2 3 4 5 6 7 | cdlemg12g | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) )  =  ( ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  𝑊 ) ) | 
						
							| 27 |  | simp13 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) | 
						
							| 28 |  | simp12 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) ) | 
						
							| 29 |  | simp23 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ≠  𝑄 ) | 
						
							| 30 | 29 | necomd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  𝑄  ≠  𝑃 ) | 
						
							| 31 |  | simp31l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 32 | 2 4 | hlatjcom | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 33 | 8 10 19 32 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 34 | 33 | breq2d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ↔  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑄  ∨  𝑃 ) ) ) | 
						
							| 35 | 31 34 | mtbid | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 36 |  | simp31r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 37 | 33 | breq2d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ↔  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑄  ∨  𝑃 ) ) ) | 
						
							| 38 | 36 37 | mtbid | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 39 | 35 38 | jca | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑄  ∨  𝑃 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑄  ∨  𝑃 ) ) ) | 
						
							| 40 |  | simp32 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) | 
						
							| 41 |  | simp33 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 42 | 2 4 | hlatjcom | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  𝐴  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∈  𝐴 )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  =  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) | 
						
							| 43 | 8 15 21 42 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  =  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) | 
						
							| 44 | 41 43 33 | 3netr3d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ≠  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 45 | 1 2 3 4 5 6 7 | cdlemg12g | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑄  ≠  𝑃 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑄  ∨  𝑃 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑄  ∨  𝑃 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ≠  ( 𝑄  ∨  𝑃 ) ) )  →  ( ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) )  =  ( ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ∧  𝑊 ) ) | 
						
							| 46 | 11 27 28 12 13 30 39 40 44 45 | syl333anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) )  =  ( ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ∧  𝑊 ) ) | 
						
							| 47 | 25 26 46 | 3eqtr3d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  𝑊 )  =  ( ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ∧  𝑊 ) ) |