| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | cdlemg12.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | cdlemg12.m |  |-  ./\ = ( meet ` K ) | 
						
							| 4 |  | cdlemg12.a |  |-  A = ( Atoms ` K ) | 
						
							| 5 |  | cdlemg12.h |  |-  H = ( LHyp ` K ) | 
						
							| 6 |  | cdlemg12.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 7 |  | cdlemg12b.r |  |-  R = ( ( trL ` K ) ` W ) | 
						
							| 8 |  | simp11l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> K e. HL ) | 
						
							| 9 | 8 | hllatd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> K e. Lat ) | 
						
							| 10 |  | simp12l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> P e. A ) | 
						
							| 11 |  | simp11 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 12 |  | simp21 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> F e. T ) | 
						
							| 13 |  | simp22 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> G e. T ) | 
						
							| 14 | 1 4 5 6 | ltrncoat |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ P e. A ) -> ( F ` ( G ` P ) ) e. A ) | 
						
							| 15 | 11 12 13 10 14 | syl121anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( F ` ( G ` P ) ) e. A ) | 
						
							| 16 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 17 | 16 2 4 | hlatjcl |  |-  ( ( K e. HL /\ P e. A /\ ( F ` ( G ` P ) ) e. A ) -> ( P .\/ ( F ` ( G ` P ) ) ) e. ( Base ` K ) ) | 
						
							| 18 | 8 10 15 17 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( P .\/ ( F ` ( G ` P ) ) ) e. ( Base ` K ) ) | 
						
							| 19 |  | simp13l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> Q e. A ) | 
						
							| 20 | 1 4 5 6 | ltrncoat |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ Q e. A ) -> ( F ` ( G ` Q ) ) e. A ) | 
						
							| 21 | 11 12 13 19 20 | syl121anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( F ` ( G ` Q ) ) e. A ) | 
						
							| 22 | 16 2 4 | hlatjcl |  |-  ( ( K e. HL /\ Q e. A /\ ( F ` ( G ` Q ) ) e. A ) -> ( Q .\/ ( F ` ( G ` Q ) ) ) e. ( Base ` K ) ) | 
						
							| 23 | 8 19 21 22 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( Q .\/ ( F ` ( G ` Q ) ) ) e. ( Base ` K ) ) | 
						
							| 24 | 16 3 | latmcom |  |-  ( ( K e. Lat /\ ( P .\/ ( F ` ( G ` P ) ) ) e. ( Base ` K ) /\ ( Q .\/ ( F ` ( G ` Q ) ) ) e. ( Base ` K ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ ( Q .\/ ( F ` ( G ` Q ) ) ) ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ ( P .\/ ( F ` ( G ` P ) ) ) ) ) | 
						
							| 25 | 9 18 23 24 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ ( Q .\/ ( F ` ( G ` Q ) ) ) ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ ( P .\/ ( F ` ( G ` P ) ) ) ) ) | 
						
							| 26 | 1 2 3 4 5 6 7 | cdlemg12g |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ ( Q .\/ ( F ` ( G ` Q ) ) ) ) = ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ W ) ) | 
						
							| 27 |  | simp13 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) | 
						
							| 28 |  | simp12 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( P e. A /\ -. P .<_ W ) ) | 
						
							| 29 |  | simp23 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> P =/= Q ) | 
						
							| 30 | 29 | necomd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> Q =/= P ) | 
						
							| 31 |  | simp31l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> -. ( R ` F ) .<_ ( P .\/ Q ) ) | 
						
							| 32 | 2 4 | hlatjcom |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) = ( Q .\/ P ) ) | 
						
							| 33 | 8 10 19 32 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( P .\/ Q ) = ( Q .\/ P ) ) | 
						
							| 34 | 33 | breq2d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( R ` F ) .<_ ( P .\/ Q ) <-> ( R ` F ) .<_ ( Q .\/ P ) ) ) | 
						
							| 35 | 31 34 | mtbid |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> -. ( R ` F ) .<_ ( Q .\/ P ) ) | 
						
							| 36 |  | simp31r |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> -. ( R ` G ) .<_ ( P .\/ Q ) ) | 
						
							| 37 | 33 | breq2d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( R ` G ) .<_ ( P .\/ Q ) <-> ( R ` G ) .<_ ( Q .\/ P ) ) ) | 
						
							| 38 | 36 37 | mtbid |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> -. ( R ` G ) .<_ ( Q .\/ P ) ) | 
						
							| 39 | 35 38 | jca |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( -. ( R ` F ) .<_ ( Q .\/ P ) /\ -. ( R ` G ) .<_ ( Q .\/ P ) ) ) | 
						
							| 40 |  | simp32 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( R ` F ) =/= ( R ` G ) ) | 
						
							| 41 |  | simp33 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) | 
						
							| 42 | 2 4 | hlatjcom |  |-  ( ( K e. HL /\ ( F ` ( G ` P ) ) e. A /\ ( F ` ( G ` Q ) ) e. A ) -> ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( ( F ` ( G ` Q ) ) .\/ ( F ` ( G ` P ) ) ) ) | 
						
							| 43 | 8 15 21 42 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( ( F ` ( G ` Q ) ) .\/ ( F ` ( G ` P ) ) ) ) | 
						
							| 44 | 41 43 33 | 3netr3d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( F ` ( G ` Q ) ) .\/ ( F ` ( G ` P ) ) ) =/= ( Q .\/ P ) ) | 
						
							| 45 | 1 2 3 4 5 6 7 | cdlemg12g |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F e. T /\ G e. T /\ Q =/= P ) /\ ( ( -. ( R ` F ) .<_ ( Q .\/ P ) /\ -. ( R ` G ) .<_ ( Q .\/ P ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` Q ) ) .\/ ( F ` ( G ` P ) ) ) =/= ( Q .\/ P ) ) ) -> ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ ( P .\/ ( F ` ( G ` P ) ) ) ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) ) | 
						
							| 46 | 11 27 28 12 13 30 39 40 44 45 | syl333anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ ( P .\/ ( F ` ( G ` P ) ) ) ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) ) | 
						
							| 47 | 25 26 46 | 3eqtr3d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) /\ ( R ` F ) =/= ( R ` G ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) ) |