Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg35.l |
|- .<_ = ( le ` K ) |
2 |
|
cdlemg35.j |
|- .\/ = ( join ` K ) |
3 |
|
cdlemg35.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdlemg35.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemg35.h |
|- H = ( LHyp ` K ) |
6 |
|
cdlemg35.t |
|- T = ( ( LTrn ` K ) ` W ) |
7 |
|
cdlemg35.r |
|- R = ( ( trL ` K ) ` W ) |
8 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) = ( R ` G ) ) -> ( K e. HL /\ W e. H ) ) |
9 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) = ( R ` G ) ) -> ( P e. A /\ -. P .<_ W ) ) |
10 |
|
simpl2r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) = ( R ` G ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
11 |
|
simpl31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) = ( R ` G ) ) -> F e. T ) |
12 |
|
simpl32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) = ( R ` G ) ) -> G e. T ) |
13 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) = ( R ` G ) ) -> ( R ` F ) = ( R ` G ) ) |
14 |
1 2 3 4 5 6 7
|
cdlemg15 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( R ` F ) = ( R ` G ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) ) |
15 |
8 9 10 11 12 13 14
|
syl321anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) = ( R ` G ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) ) |
16 |
|
simpll1 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( F ` P ) = P ) -> ( K e. HL /\ W e. H ) ) |
17 |
|
simpll2 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( F ` P ) = P ) -> ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) ) |
18 |
|
simpl31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) =/= ( R ` G ) ) -> F e. T ) |
19 |
18
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( F ` P ) = P ) -> F e. T ) |
20 |
|
simpl32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) =/= ( R ` G ) ) -> G e. T ) |
21 |
20
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( F ` P ) = P ) -> G e. T ) |
22 |
|
simpr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( F ` P ) = P ) -> ( F ` P ) = P ) |
23 |
1 2 3 4 5 6 7
|
cdlemg14f |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` P ) = P ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) ) |
24 |
16 17 19 21 22 23
|
syl113anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( F ` P ) = P ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) ) |
25 |
|
simpll1 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( G ` P ) = P ) -> ( K e. HL /\ W e. H ) ) |
26 |
|
simpll2 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( G ` P ) = P ) -> ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) ) |
27 |
18
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( G ` P ) = P ) -> F e. T ) |
28 |
20
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( G ` P ) = P ) -> G e. T ) |
29 |
|
simpr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( G ` P ) = P ) -> ( G ` P ) = P ) |
30 |
1 2 3 4 5 6 7
|
cdlemg14g |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( G ` P ) = P ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) ) |
31 |
25 26 27 28 29 30
|
syl113anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( G ` P ) = P ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) ) |
32 |
|
simpll1 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) -> ( K e. HL /\ W e. H ) ) |
33 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) =/= ( R ` G ) ) -> ( P e. A /\ -. P .<_ W ) ) |
34 |
33
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) -> ( P e. A /\ -. P .<_ W ) ) |
35 |
|
simpl2r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) =/= ( R ` G ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
36 |
35
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
37 |
|
simpll3 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) -> ( F e. T /\ G e. T /\ P =/= Q ) ) |
38 |
|
simpr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) -> ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) |
39 |
|
simplr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) -> ( R ` F ) =/= ( R ` G ) ) |
40 |
1 2 3 4 5 6 7
|
cdlemg38 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) ) |
41 |
32 34 36 37 38 39 40
|
syl312anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) ) |
42 |
24 31 41
|
pm2.61da2ne |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) /\ ( R ` F ) =/= ( R ` G ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) ) |
43 |
15 42
|
pm2.61dane |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) ) |