Metamath Proof Explorer


Theorem cdlemg39

Description: Eliminate =/= conditions from cdlemg38 . TODO: Would this better be done at cdlemg35 ? TODO: Fix comment. (Contributed by NM, 31-May-2013)

Ref Expression
Hypotheses cdlemg35.l = ( le ‘ 𝐾 )
cdlemg35.j = ( join ‘ 𝐾 )
cdlemg35.m = ( meet ‘ 𝐾 )
cdlemg35.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg35.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg35.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg35.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemg39 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )

Proof

Step Hyp Ref Expression
1 cdlemg35.l = ( le ‘ 𝐾 )
2 cdlemg35.j = ( join ‘ 𝐾 )
3 cdlemg35.m = ( meet ‘ 𝐾 )
4 cdlemg35.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemg35.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemg35.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemg35.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 simpl2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
10 simpl2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
11 simpl31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ) → 𝐹𝑇 )
12 simpl32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ) → 𝐺𝑇 )
13 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ) → ( 𝑅𝐹 ) = ( 𝑅𝐺 ) )
14 1 2 3 4 5 6 7 cdlemg15 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )
15 8 9 10 11 12 13 14 syl321anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )
16 simpll1 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
17 simpll2 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) )
18 simpl31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) → 𝐹𝑇 )
19 18 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → 𝐹𝑇 )
20 simpl32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) → 𝐺𝑇 )
21 20 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → 𝐺𝑇 )
22 simpr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝐹𝑃 ) = 𝑃 )
23 1 2 3 4 5 6 7 cdlemg14f ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹𝑃 ) = 𝑃 ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )
24 16 17 19 21 22 23 syl113anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )
25 simpll1 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) ∧ ( 𝐺𝑃 ) = 𝑃 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
26 simpll2 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) ∧ ( 𝐺𝑃 ) = 𝑃 ) → ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) )
27 18 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) ∧ ( 𝐺𝑃 ) = 𝑃 ) → 𝐹𝑇 )
28 20 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) ∧ ( 𝐺𝑃 ) = 𝑃 ) → 𝐺𝑇 )
29 simpr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) ∧ ( 𝐺𝑃 ) = 𝑃 ) → ( 𝐺𝑃 ) = 𝑃 )
30 1 2 3 4 5 6 7 cdlemg14g ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐺𝑃 ) = 𝑃 ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )
31 25 26 27 28 29 30 syl113anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) ∧ ( 𝐺𝑃 ) = 𝑃 ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )
32 simpll1 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
33 simpl2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
34 33 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
35 simpl2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
36 35 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
37 simpll3 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ) → ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) )
38 simpr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ) → ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) )
39 simplr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ) → ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) )
40 1 2 3 4 5 6 7 cdlemg38 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )
41 32 34 36 37 38 39 40 syl312anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )
42 24 31 41 pm2.61da2ne ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )
43 15 42 pm2.61dane ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )