Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg35.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemg35.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdlemg35.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdlemg35.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemg35.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemg35.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemg35.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
simpl2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
10 |
|
simpl2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
11 |
|
simpl31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) → 𝐹 ∈ 𝑇 ) |
12 |
|
simpl32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) → 𝐺 ∈ 𝑇 ) |
13 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) → ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) |
14 |
1 2 3 4 5 6 7
|
cdlemg15 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑊 ) ) |
15 |
8 9 10 11 12 13 14
|
syl321anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑊 ) ) |
16 |
|
simpll1 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
17 |
|
simpll2 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) |
18 |
|
simpl31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → 𝐹 ∈ 𝑇 ) |
19 |
18
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝐹 ∈ 𝑇 ) |
20 |
|
simpl32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → 𝐺 ∈ 𝑇 ) |
21 |
20
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝐺 ∈ 𝑇 ) |
22 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝐹 ‘ 𝑃 ) = 𝑃 ) |
23 |
1 2 3 4 5 6 7
|
cdlemg14f |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑊 ) ) |
24 |
16 17 19 21 22 23
|
syl113anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑊 ) ) |
25 |
|
simpll1 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐺 ‘ 𝑃 ) = 𝑃 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
26 |
|
simpll2 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐺 ‘ 𝑃 ) = 𝑃 ) → ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) |
27 |
18
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐺 ‘ 𝑃 ) = 𝑃 ) → 𝐹 ∈ 𝑇 ) |
28 |
20
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐺 ‘ 𝑃 ) = 𝑃 ) → 𝐺 ∈ 𝑇 ) |
29 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐺 ‘ 𝑃 ) = 𝑃 ) → ( 𝐺 ‘ 𝑃 ) = 𝑃 ) |
30 |
1 2 3 4 5 6 7
|
cdlemg14g |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝐺 ‘ 𝑃 ) = 𝑃 ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑊 ) ) |
31 |
25 26 27 28 29 30
|
syl113anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐺 ‘ 𝑃 ) = 𝑃 ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑊 ) ) |
32 |
|
simpll1 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
33 |
|
simpl2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
34 |
33
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
35 |
|
simpl2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
36 |
35
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
37 |
|
simpll3 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) |
38 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ) |
39 |
|
simplr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) |
40 |
1 2 3 4 5 6 7
|
cdlemg38 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑊 ) ) |
41 |
32 34 36 37 38 39 40
|
syl312anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑊 ) ) |
42 |
24 31 41
|
pm2.61da2ne |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑊 ) ) |
43 |
15 42
|
pm2.61dane |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑊 ) ) |