Metamath Proof Explorer


Theorem cdlemg40

Description: Eliminate P =/= Q conditions from cdlemg39 . TODO: Fix comment. (Contributed by NM, 31-May-2013)

Ref Expression
Hypotheses cdlemg35.l ˙=K
cdlemg35.j ˙=joinK
cdlemg35.m ˙=meetK
cdlemg35.a A=AtomsK
cdlemg35.h H=LHypK
cdlemg35.t T=LTrnKW
Assertion cdlemg40 KHLWHPA¬P˙WQA¬Q˙WFTGTP˙FGP˙W=Q˙FGQ˙W

Proof

Step Hyp Ref Expression
1 cdlemg35.l ˙=K
2 cdlemg35.j ˙=joinK
3 cdlemg35.m ˙=meetK
4 cdlemg35.a A=AtomsK
5 cdlemg35.h H=LHypK
6 cdlemg35.t T=LTrnKW
7 id P=QP=Q
8 2fveq3 P=QFGP=FGQ
9 7 8 oveq12d P=QP˙FGP=Q˙FGQ
10 9 oveq1d P=QP˙FGP˙W=Q˙FGQ˙W
11 10 adantl KHLWHPA¬P˙WQA¬Q˙WFTGTP=QP˙FGP˙W=Q˙FGQ˙W
12 simpl1 KHLWHPA¬P˙WQA¬Q˙WFTGTPQKHLWH
13 simpl2 KHLWHPA¬P˙WQA¬Q˙WFTGTPQPA¬P˙WQA¬Q˙W
14 simpl3l KHLWHPA¬P˙WQA¬Q˙WFTGTPQFT
15 simpl3r KHLWHPA¬P˙WQA¬Q˙WFTGTPQGT
16 simpr KHLWHPA¬P˙WQA¬Q˙WFTGTPQPQ
17 eqid trLKW=trLKW
18 1 2 3 4 5 6 17 cdlemg39 KHLWHPA¬P˙WQA¬Q˙WFTGTPQP˙FGP˙W=Q˙FGQ˙W
19 12 13 14 15 16 18 syl113anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQP˙FGP˙W=Q˙FGQ˙W
20 11 19 pm2.61dane KHLWHPA¬P˙WQA¬Q˙WFTGTP˙FGP˙W=Q˙FGQ˙W