Metamath Proof Explorer


Theorem cdlemg3a

Description: Part of proof of Lemma G in Crawley p. 116, line 19. Show p \/ q = p \/ u. TODO: reformat cdleme0cp to match this, then replace with cdleme0cp . (Contributed by NM, 19-Apr-2013)

Ref Expression
Hypotheses cdlemg3.l ˙ = K
cdlemg3.j ˙ = join K
cdlemg3.m ˙ = meet K
cdlemg3.a A = Atoms K
cdlemg3.h H = LHyp K
cdlemg3.u U = P ˙ Q ˙ W
Assertion cdlemg3a K HL W H P A ¬ P ˙ W Q A P ˙ Q = P ˙ U

Proof

Step Hyp Ref Expression
1 cdlemg3.l ˙ = K
2 cdlemg3.j ˙ = join K
3 cdlemg3.m ˙ = meet K
4 cdlemg3.a A = Atoms K
5 cdlemg3.h H = LHyp K
6 cdlemg3.u U = P ˙ Q ˙ W
7 1 2 3 4 5 6 cdleme8 K HL W H P A ¬ P ˙ W Q A P ˙ U = P ˙ Q
8 7 eqcomd K HL W H P A ¬ P ˙ W Q A P ˙ Q = P ˙ U