Metamath Proof Explorer


Theorem cdlemg8d

Description: TODO: FIX COMMENT. (Contributed by NM, 29-Apr-2013)

Ref Expression
Hypotheses cdlemg8.l ˙=K
cdlemg8.j ˙=joinK
cdlemg8.m ˙=meetK
cdlemg8.a A=AtomsK
cdlemg8.h H=LHypK
cdlemg8.t T=LTrnKW
Assertion cdlemg8d KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPP˙FGP˙W=Q˙FGQ˙W

Proof

Step Hyp Ref Expression
1 cdlemg8.l ˙=K
2 cdlemg8.j ˙=joinK
3 cdlemg8.m ˙=meetK
4 cdlemg8.a A=AtomsK
5 cdlemg8.h H=LHypK
6 cdlemg8.t T=LTrnKW
7 1 2 3 4 5 6 cdlemg8b KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPP˙FGP=P˙Q
8 1 2 3 4 5 6 cdlemg8c KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPQ˙FGQ=P˙Q
9 7 8 eqtr4d KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPP˙FGP=Q˙FGQ
10 9 oveq1d KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPP˙FGP˙W=Q˙FGQ˙W