| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg8.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
cdlemg8.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
cdlemg8.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
cdlemg8.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
cdlemg8.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
cdlemg8.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
1 2 3 4 5 6
|
cdlemg8b |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) = ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ≠ 𝑃 ) ) → ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) = ( 𝑃 ∨ 𝑄 ) ) |
| 8 |
1 2 3 4 5 6
|
cdlemg8c |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) = ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ≠ 𝑃 ) ) → ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) = ( 𝑃 ∨ 𝑄 ) ) |
| 9 |
7 8
|
eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) = ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ≠ 𝑃 ) ) → ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) = ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ) |
| 10 |
9
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) = ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ≠ 𝑃 ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑊 ) ) |