Metamath Proof Explorer


Theorem cdlemg8b

Description: TODO: FIX COMMENT. (Contributed by NM, 29-Apr-2013)

Ref Expression
Hypotheses cdlemg8.l = ( le ‘ 𝐾 )
cdlemg8.j = ( join ‘ 𝐾 )
cdlemg8.m = ( meet ‘ 𝐾 )
cdlemg8.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg8.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg8.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemg8b ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) = ( 𝑃 𝑄 ) )

Proof

Step Hyp Ref Expression
1 cdlemg8.l = ( le ‘ 𝐾 )
2 cdlemg8.j = ( join ‘ 𝐾 )
3 cdlemg8.m = ( meet ‘ 𝐾 )
4 cdlemg8.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemg8.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemg8.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → 𝐾 ∈ HL )
8 7 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → 𝐾 ∈ Lat )
9 simp21l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → 𝑃𝐴 )
10 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
11 10 4 atbase ( 𝑃𝐴𝑃 ∈ ( Base ‘ 𝐾 ) )
12 9 11 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) )
13 simp22l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → 𝑄𝐴 )
14 10 4 atbase ( 𝑄𝐴𝑄 ∈ ( Base ‘ 𝐾 ) )
15 13 14 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) )
16 10 1 2 latlej1 ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → 𝑃 ( 𝑃 𝑄 ) )
17 8 12 15 16 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → 𝑃 ( 𝑃 𝑄 ) )
18 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
19 simp23 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → 𝐹𝑇 )
20 simp31 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → 𝐺𝑇 )
21 simp21 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
22 1 4 5 6 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) )
23 18 20 21 22 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) )
24 1 4 5 6 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) ) → ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ ( 𝐺𝑃 ) ) 𝑊 ) )
25 24 simpld ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 )
26 18 19 23 25 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 )
27 10 4 atbase ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ ( Base ‘ 𝐾 ) )
28 26 27 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ ( Base ‘ 𝐾 ) )
29 10 5 6 ltrncl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐺𝑄 ) ∈ ( Base ‘ 𝐾 ) )
30 18 20 15 29 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( 𝐺𝑄 ) ∈ ( Base ‘ 𝐾 ) )
31 10 5 6 ltrncl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝐺𝑄 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) ∈ ( Base ‘ 𝐾 ) )
32 18 19 30 31 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) ∈ ( Base ‘ 𝐾 ) )
33 10 1 2 latlej1 ( ( 𝐾 ∈ Lat ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐹 ‘ ( 𝐺𝑄 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) )
34 8 28 32 33 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) )
35 simp32 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) )
36 34 35 breqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝑃 𝑄 ) )
37 10 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
38 7 9 13 37 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
39 10 1 2 latjle12 ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑃 ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝑃 𝑄 ) ) ↔ ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑃 𝑄 ) ) )
40 8 12 28 38 39 syl13anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( ( 𝑃 ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝑃 𝑄 ) ) ↔ ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑃 𝑄 ) ) )
41 17 36 40 mpbi2and ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑃 𝑄 ) )
42 simp33 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 )
43 42 necomd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → 𝑃 ≠ ( 𝐹 ‘ ( 𝐺𝑃 ) ) )
44 1 2 4 ps-1 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴𝑃 ≠ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ∧ ( 𝑃𝐴𝑄𝐴 ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑃 𝑄 ) ↔ ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) = ( 𝑃 𝑄 ) ) )
45 7 9 26 43 9 13 44 syl132anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑃 𝑄 ) ↔ ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) = ( 𝑃 𝑄 ) ) )
46 41 45 mpbid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) = ( 𝑃 𝑄 ) )