Metamath Proof Explorer


Theorem cdlemg8c

Description: TODO: FIX COMMENT. (Contributed by NM, 29-Apr-2013)

Ref Expression
Hypotheses cdlemg8.l = ( le ‘ 𝐾 )
cdlemg8.j = ( join ‘ 𝐾 )
cdlemg8.m = ( meet ‘ 𝐾 )
cdlemg8.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg8.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg8.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemg8c ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) )

Proof

Step Hyp Ref Expression
1 cdlemg8.l = ( le ‘ 𝐾 )
2 cdlemg8.j = ( join ‘ 𝐾 )
3 cdlemg8.m = ( meet ‘ 𝐾 )
4 cdlemg8.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemg8.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemg8.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 simp22 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
9 simp21 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
10 simp23 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → 𝐹𝑇 )
11 simp31 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → 𝐺𝑇 )
12 simp32 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) )
13 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → 𝐾 ∈ HL )
14 1 4 5 6 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) )
15 7 11 9 14 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) )
16 1 4 5 6 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) ) → ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ ( 𝐺𝑃 ) ) 𝑊 ) )
17 16 simpld ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 )
18 7 10 15 17 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 )
19 1 4 5 6 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝐺𝑄 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑄 ) 𝑊 ) )
20 7 11 8 19 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( ( 𝐺𝑄 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑄 ) 𝑊 ) )
21 1 4 5 6 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝐺𝑄 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑄 ) 𝑊 ) ) → ( ( 𝐹 ‘ ( 𝐺𝑄 ) ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ ( 𝐺𝑄 ) ) 𝑊 ) )
22 21 simpld ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝐺𝑄 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑄 ) 𝑊 ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) ∈ 𝐴 )
23 7 10 20 22 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) ∈ 𝐴 )
24 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺𝑄 ) ) ∈ 𝐴 ) → ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( ( 𝐹 ‘ ( 𝐺𝑄 ) ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) )
25 13 18 23 24 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( ( 𝐹 ‘ ( 𝐺𝑄 ) ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) )
26 simp21l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → 𝑃𝐴 )
27 simp22l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → 𝑄𝐴 )
28 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄 ) = ( 𝑄 𝑃 ) )
29 13 26 27 28 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( 𝑃 𝑄 ) = ( 𝑄 𝑃 ) )
30 12 25 29 3eqtr3d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( ( 𝐹 ‘ ( 𝐺𝑄 ) ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) = ( 𝑄 𝑃 ) )
31 simp33 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 )
32 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) ∧ ( 𝐹 ‘ ( 𝐺𝑄 ) ) = 𝑄 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
33 simpl22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) ∧ ( 𝐹 ‘ ( 𝐺𝑄 ) ) = 𝑄 ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
34 simpl21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) ∧ ( 𝐹 ‘ ( 𝐺𝑄 ) ) = 𝑄 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
35 simpl23 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) ∧ ( 𝐹 ‘ ( 𝐺𝑄 ) ) = 𝑄 ) → 𝐹𝑇 )
36 simpl31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) ∧ ( 𝐹 ‘ ( 𝐺𝑄 ) ) = 𝑄 ) → 𝐺𝑇 )
37 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) ∧ ( 𝐹 ‘ ( 𝐺𝑄 ) ) = 𝑄 ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = 𝑄 )
38 1 4 5 6 cdlemg6 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑄 ) ) = 𝑄 ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 )
39 32 33 34 35 36 37 38 syl123anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) ∧ ( 𝐹 ‘ ( 𝐺𝑄 ) ) = 𝑄 ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 )
40 39 ex ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( ( 𝐹 ‘ ( 𝐺𝑄 ) ) = 𝑄 → ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) )
41 40 necon3d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 → ( 𝐹 ‘ ( 𝐺𝑄 ) ) ≠ 𝑄 ) )
42 31 41 mpd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) ≠ 𝑄 )
43 1 2 3 4 5 6 cdlemg8b ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑄 ) ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) = ( 𝑄 𝑃 ) ∧ ( 𝐹 ‘ ( 𝐺𝑄 ) ) ≠ 𝑄 ) ) → ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑄 𝑃 ) )
44 7 8 9 10 11 30 42 43 syl133anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑄 𝑃 ) )
45 44 29 eqtr4d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 ) ) → ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑃 𝑄 ) )