Metamath Proof Explorer


Theorem cdlemg8c

Description: TODO: FIX COMMENT. (Contributed by NM, 29-Apr-2013)

Ref Expression
Hypotheses cdlemg8.l ˙=K
cdlemg8.j ˙=joinK
cdlemg8.m ˙=meetK
cdlemg8.a A=AtomsK
cdlemg8.h H=LHypK
cdlemg8.t T=LTrnKW
Assertion cdlemg8c KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPQ˙FGQ=P˙Q

Proof

Step Hyp Ref Expression
1 cdlemg8.l ˙=K
2 cdlemg8.j ˙=joinK
3 cdlemg8.m ˙=meetK
4 cdlemg8.a A=AtomsK
5 cdlemg8.h H=LHypK
6 cdlemg8.t T=LTrnKW
7 simp1 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPKHLWH
8 simp22 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPQA¬Q˙W
9 simp21 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPPA¬P˙W
10 simp23 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPFT
11 simp31 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPGT
12 simp32 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPFGP˙FGQ=P˙Q
13 simp1l KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPKHL
14 1 4 5 6 ltrnel KHLWHGTPA¬P˙WGPA¬GP˙W
15 7 11 9 14 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPGPA¬GP˙W
16 1 4 5 6 ltrnel KHLWHFTGPA¬GP˙WFGPA¬FGP˙W
17 16 simpld KHLWHFTGPA¬GP˙WFGPA
18 7 10 15 17 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPFGPA
19 1 4 5 6 ltrnel KHLWHGTQA¬Q˙WGQA¬GQ˙W
20 7 11 8 19 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPGQA¬GQ˙W
21 1 4 5 6 ltrnel KHLWHFTGQA¬GQ˙WFGQA¬FGQ˙W
22 21 simpld KHLWHFTGQA¬GQ˙WFGQA
23 7 10 20 22 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPFGQA
24 2 4 hlatjcom KHLFGPAFGQAFGP˙FGQ=FGQ˙FGP
25 13 18 23 24 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPFGP˙FGQ=FGQ˙FGP
26 simp21l KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPPA
27 simp22l KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPQA
28 2 4 hlatjcom KHLPAQAP˙Q=Q˙P
29 13 26 27 28 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPP˙Q=Q˙P
30 12 25 29 3eqtr3d KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPFGQ˙FGP=Q˙P
31 simp33 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPFGPP
32 simpl1 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPFGQ=QKHLWH
33 simpl22 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPFGQ=QQA¬Q˙W
34 simpl21 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPFGQ=QPA¬P˙W
35 simpl23 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPFGQ=QFT
36 simpl31 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPFGQ=QGT
37 simpr KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPFGQ=QFGQ=Q
38 1 4 5 6 cdlemg6 KHLWHQA¬Q˙WPA¬P˙WFTGTFGQ=QFGP=P
39 32 33 34 35 36 37 38 syl123anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPFGQ=QFGP=P
40 39 ex KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPFGQ=QFGP=P
41 40 necon3d KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPFGPPFGQQ
42 31 41 mpd KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPFGQQ
43 1 2 3 4 5 6 cdlemg8b KHLWHQA¬Q˙WPA¬P˙WFTGTFGQ˙FGP=Q˙PFGQQQ˙FGQ=Q˙P
44 7 8 9 10 11 30 42 43 syl133anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPQ˙FGQ=Q˙P
45 44 29 eqtr4d KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPQ˙FGQ=P˙Q