Metamath Proof Explorer


Theorem cdlemg9a

Description: TODO: FIX COMMENT. (Contributed by NM, 1-May-2013)

Ref Expression
Hypotheses cdlemg8.l ˙=K
cdlemg8.j ˙=joinK
cdlemg8.m ˙=meetK
cdlemg8.a A=AtomsK
cdlemg8.h H=LHypK
cdlemg8.t T=LTrnKW
cdlemg9.u U=P˙Q˙W
Assertion cdlemg9a KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙QP˙U˙FGP˙U˙GP˙U

Proof

Step Hyp Ref Expression
1 cdlemg8.l ˙=K
2 cdlemg8.j ˙=joinK
3 cdlemg8.m ˙=meetK
4 cdlemg8.a A=AtomsK
5 cdlemg8.h H=LHypK
6 cdlemg8.t T=LTrnKW
7 cdlemg9.u U=P˙Q˙W
8 simp1l KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙QKHL
9 simp21l KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙QPA
10 simp1 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙QKHLWH
11 simp23 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙QFT
12 simp31 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙QGT
13 1 4 5 6 ltrncoat KHLWHFTGTPAFGPA
14 10 11 12 9 13 syl121anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙QFGPA
15 simp1r KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙QWH
16 simp21 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙QPA¬P˙W
17 simp22l KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙QQA
18 simp32 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙QPQ
19 1 2 3 4 5 7 cdleme0a KHLWHPA¬P˙WQAPQUA
20 8 15 16 17 18 19 syl212anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙QUA
21 simp33 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙QFGP˙FGQP˙Q
22 simp22 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙QQA¬Q˙W
23 5 6 1 2 4 3 7 cdlemg2l KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=FGP˙U
24 10 16 22 11 12 23 syl122anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙QFGP˙FGQ=FGP˙U
25 1 2 3 4 5 7 cdlemg3a KHLWHPA¬P˙WQAP˙Q=P˙U
26 8 15 16 17 25 syl211anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙QP˙Q=P˙U
27 21 24 26 3netr3d KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙QFGP˙UP˙U
28 27 necomd KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙QP˙UFGP˙U
29 1 2 3 4 2llnma3r KHLPAFGPAUAP˙UFGP˙UP˙U˙FGP˙U=U
30 8 9 14 20 28 29 syl131anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙QP˙U˙FGP˙U=U
31 1 4 5 6 ltrnat KHLWHGTPAGPA
32 10 12 9 31 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙QGPA
33 1 2 4 hlatlej2 KHLGPAUAU˙GP˙U
34 8 32 20 33 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙QU˙GP˙U
35 30 34 eqbrtrd KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙QP˙U˙FGP˙U˙GP˙U