Metamath Proof Explorer


Theorem cdlemk16

Description: Part of proof of Lemma K of Crawley p. 118. (Contributed by NM, 1-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b B = Base K
cdlemk1.l ˙ = K
cdlemk1.j ˙ = join K
cdlemk1.m ˙ = meet K
cdlemk1.a A = Atoms K
cdlemk1.h H = LHyp K
cdlemk1.t T = LTrn K W
cdlemk1.r R = trL K W
cdlemk1.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
cdlemk1.o O = S D
Assertion cdlemk16 K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F P ˙ R F ˙ O P ˙ R F D -1 A ¬ P ˙ R F ˙ O P ˙ R F D -1 ˙ W

Proof

Step Hyp Ref Expression
1 cdlemk1.b B = Base K
2 cdlemk1.l ˙ = K
3 cdlemk1.j ˙ = join K
4 cdlemk1.m ˙ = meet K
5 cdlemk1.a A = Atoms K
6 cdlemk1.h H = LHyp K
7 cdlemk1.t T = LTrn K W
8 cdlemk1.r R = trL K W
9 cdlemk1.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 cdlemk1.o O = S D
11 simp11 K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F K HL W H
12 simp23 K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F R F = R N
13 simp12 K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F F T
14 simp13 K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F D T
15 simp21 K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F N T
16 simp33 K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F R D R F
17 16 16 jca K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F R D R F R D R F
18 simp31 K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F F I B
19 simp32 K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F D I B
20 18 18 19 3jca K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F F I B F I B D I B
21 simp22 K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F P A ¬ P ˙ W
22 1 2 3 4 5 6 7 8 9 10 cdlemk16a K HL W H R F = R N F T F T D T N T R D R F R D R F F I B F I B D I B P A ¬ P ˙ W P ˙ R F ˙ O P ˙ R F D -1 A ¬ P ˙ R F ˙ O P ˙ R F D -1 ˙ W
23 11 12 13 13 14 15 17 20 21 22 syl333anc K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F P ˙ R F ˙ O P ˙ R F D -1 A ¬ P ˙ R F ˙ O P ˙ R F D -1 ˙ W