Metamath Proof Explorer


Theorem cdlemk40f

Description: TODO: fix comment. (Contributed by NM, 31-Jul-2013)

Ref Expression
Hypotheses cdlemk40.x X=ιzT|φ
cdlemk40.u U=gTifF=NgX
Assertion cdlemk40f FNGTUG=G/gX

Proof

Step Hyp Ref Expression
1 cdlemk40.x X=ιzT|φ
2 cdlemk40.u U=gTifF=NgX
3 1 2 cdlemk40 GTUG=ifF=NGG/gX
4 ifnefalse FNifF=NGG/gX=G/gX
5 3 4 sylan9eqr FNGTUG=G/gX