Metamath Proof Explorer


Theorem cdlemkuel-3

Description: Part of proof of Lemma K of Crawley p. 118. Conditions for the sigma_2 (p) function to be a translation. TODO: combine cdlemkj ? (Contributed by NM, 11-Jul-2013)

Ref Expression
Hypotheses cdlemk3.b B=BaseK
cdlemk3.l ˙=K
cdlemk3.j ˙=joinK
cdlemk3.m ˙=meetK
cdlemk3.a A=AtomsK
cdlemk3.h H=LHypK
cdlemk3.t T=LTrnKW
cdlemk3.r R=trLKW
cdlemk3.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
cdlemk3.u1 Y=dT,eTιjT|jP=P˙Re˙SdP˙Red-1
Assertion cdlemkuel-3 KHLWHRF=RNGTFTDTNTRDRFRDRGFIBGIBDIBPA¬P˙WDYGT

Proof

Step Hyp Ref Expression
1 cdlemk3.b B=BaseK
2 cdlemk3.l ˙=K
3 cdlemk3.j ˙=joinK
4 cdlemk3.m ˙=meetK
5 cdlemk3.a A=AtomsK
6 cdlemk3.h H=LHypK
7 cdlemk3.t T=LTrnKW
8 cdlemk3.r R=trLKW
9 cdlemk3.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
10 cdlemk3.u1 Y=dT,eTιjT|jP=P˙Re˙SdP˙Red-1
11 simp22 KHLWHRF=RNGTFTDTNTRDRFRDRGFIBGIBDIBPA¬P˙WDT
12 simp13 KHLWHRF=RNGTFTDTNTRDRFRDRGFIBGIBDIBPA¬P˙WGT
13 eqid SD=SD
14 eqid eTιjT|jP=P˙Re˙SDP˙ReD-1=eTιjT|jP=P˙Re˙SDP˙ReD-1
15 1 2 3 4 5 6 7 8 9 10 13 14 cdlemkuu DTGTDYG=eTιjT|jP=P˙Re˙SDP˙ReD-1G
16 11 12 15 syl2anc KHLWHRF=RNGTFTDTNTRDRFRDRGFIBGIBDIBPA¬P˙WDYG=eTιjT|jP=P˙Re˙SDP˙ReD-1G
17 1 2 3 4 5 6 7 8 9 13 14 cdlemkuel KHLWHRF=RNGTFTDTNTRDRFRDRGFIBGIBDIBPA¬P˙WeTιjT|jP=P˙Re˙SDP˙ReD-1GT
18 16 17 eqeltrd KHLWHRF=RNGTFTDTNTRDRFRDRGFIBGIBDIBPA¬P˙WDYGT