Metamath Proof Explorer


Theorem cdleml4N

Description: Part of proof of Lemma L of Crawley p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdleml1.b B = Base K
cdleml1.h H = LHyp K
cdleml1.t T = LTrn K W
cdleml1.r R = trL K W
cdleml1.e E = TEndo K W
cdleml3.o 0 ˙ = g T I B
Assertion cdleml4N K HL W H U E V E U 0 ˙ V 0 ˙ s E s U = V

Proof

Step Hyp Ref Expression
1 cdleml1.b B = Base K
2 cdleml1.h H = LHyp K
3 cdleml1.t T = LTrn K W
4 cdleml1.r R = trL K W
5 cdleml1.e E = TEndo K W
6 cdleml3.o 0 ˙ = g T I B
7 1 2 3 cdlemftr0 K HL W H f T f I B
8 7 3ad2ant1 K HL W H U E V E U 0 ˙ V 0 ˙ f T f I B
9 simp11 K HL W H U E V E U 0 ˙ V 0 ˙ f T f I B K HL W H
10 simp12l K HL W H U E V E U 0 ˙ V 0 ˙ f T f I B U E
11 simp12r K HL W H U E V E U 0 ˙ V 0 ˙ f T f I B V E
12 simp2 K HL W H U E V E U 0 ˙ V 0 ˙ f T f I B f T
13 simp3 K HL W H U E V E U 0 ˙ V 0 ˙ f T f I B f I B
14 simp13l K HL W H U E V E U 0 ˙ V 0 ˙ f T f I B U 0 ˙
15 simp13r K HL W H U E V E U 0 ˙ V 0 ˙ f T f I B V 0 ˙
16 1 2 3 4 5 6 cdleml3N K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ s E s U = V
17 9 10 11 12 13 14 15 16 syl133anc K HL W H U E V E U 0 ˙ V 0 ˙ f T f I B s E s U = V
18 17 rexlimdv3a K HL W H U E V E U 0 ˙ V 0 ˙ f T f I B s E s U = V
19 8 18 mpd K HL W H U E V E U 0 ˙ V 0 ˙ s E s U = V