Metamath Proof Explorer


Theorem cdleml5N

Description: Part of proof of Lemma L of Crawley p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdleml1.b B = Base K
cdleml1.h H = LHyp K
cdleml1.t T = LTrn K W
cdleml1.r R = trL K W
cdleml1.e E = TEndo K W
cdleml3.o 0 ˙ = g T I B
Assertion cdleml5N K HL W H U E V E U 0 ˙ s E s U = V

Proof

Step Hyp Ref Expression
1 cdleml1.b B = Base K
2 cdleml1.h H = LHyp K
3 cdleml1.t T = LTrn K W
4 cdleml1.r R = trL K W
5 cdleml1.e E = TEndo K W
6 cdleml3.o 0 ˙ = g T I B
7 simpl1 K HL W H U E V E U 0 ˙ V = 0 ˙ K HL W H
8 1 2 3 5 6 tendo0cl K HL W H 0 ˙ E
9 7 8 syl K HL W H U E V E U 0 ˙ V = 0 ˙ 0 ˙ E
10 simpl2l K HL W H U E V E U 0 ˙ V = 0 ˙ U E
11 1 2 3 5 6 tendo0mul K HL W H U E 0 ˙ U = 0 ˙
12 7 10 11 syl2anc K HL W H U E V E U 0 ˙ V = 0 ˙ 0 ˙ U = 0 ˙
13 simpr K HL W H U E V E U 0 ˙ V = 0 ˙ V = 0 ˙
14 12 13 eqtr4d K HL W H U E V E U 0 ˙ V = 0 ˙ 0 ˙ U = V
15 coeq1 s = 0 ˙ s U = 0 ˙ U
16 15 eqeq1d s = 0 ˙ s U = V 0 ˙ U = V
17 16 rspcev 0 ˙ E 0 ˙ U = V s E s U = V
18 9 14 17 syl2anc K HL W H U E V E U 0 ˙ V = 0 ˙ s E s U = V
19 simpl1 K HL W H U E V E U 0 ˙ V 0 ˙ K HL W H
20 simpl2 K HL W H U E V E U 0 ˙ V 0 ˙ U E V E
21 simpl3 K HL W H U E V E U 0 ˙ V 0 ˙ U 0 ˙
22 simpr K HL W H U E V E U 0 ˙ V 0 ˙ V 0 ˙
23 1 2 3 4 5 6 cdleml4N K HL W H U E V E U 0 ˙ V 0 ˙ s E s U = V
24 19 20 21 22 23 syl112anc K HL W H U E V E U 0 ˙ V 0 ˙ s E s U = V
25 18 24 pm2.61dane K HL W H U E V E U 0 ˙ s E s U = V