Step |
Hyp |
Ref |
Expression |
1 |
|
cdleml1.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdleml1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
cdleml1.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
cdleml1.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
cdleml1.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
cdleml3.o |
⊢ 0 = ( 𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
7 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
1 2 3 5 6
|
tendo0cl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 0 ∈ 𝐸 ) |
9 |
7 8
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → 0 ∈ 𝐸 ) |
10 |
|
simpl2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → 𝑈 ∈ 𝐸 ) |
11 |
1 2 3 5 6
|
tendo0mul |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ) → ( 0 ∘ 𝑈 ) = 0 ) |
12 |
7 10 11
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → ( 0 ∘ 𝑈 ) = 0 ) |
13 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → 𝑉 = 0 ) |
14 |
12 13
|
eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → ( 0 ∘ 𝑈 ) = 𝑉 ) |
15 |
|
coeq1 |
⊢ ( 𝑠 = 0 → ( 𝑠 ∘ 𝑈 ) = ( 0 ∘ 𝑈 ) ) |
16 |
15
|
eqeq1d |
⊢ ( 𝑠 = 0 → ( ( 𝑠 ∘ 𝑈 ) = 𝑉 ↔ ( 0 ∘ 𝑈 ) = 𝑉 ) ) |
17 |
16
|
rspcev |
⊢ ( ( 0 ∈ 𝐸 ∧ ( 0 ∘ 𝑈 ) = 𝑉 ) → ∃ 𝑠 ∈ 𝐸 ( 𝑠 ∘ 𝑈 ) = 𝑉 ) |
18 |
9 14 17
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → ∃ 𝑠 ∈ 𝐸 ( 𝑠 ∘ 𝑈 ) = 𝑉 ) |
19 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 ≠ 0 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
20 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 ≠ 0 ) → ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ) |
21 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 ≠ 0 ) → 𝑈 ≠ 0 ) |
22 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 ≠ 0 ) → 𝑉 ≠ 0 ) |
23 |
1 2 3 4 5 6
|
cdleml4N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝑈 ≠ 0 ∧ 𝑉 ≠ 0 ) ) → ∃ 𝑠 ∈ 𝐸 ( 𝑠 ∘ 𝑈 ) = 𝑉 ) |
24 |
19 20 21 22 23
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 ≠ 0 ) → ∃ 𝑠 ∈ 𝐸 ( 𝑠 ∘ 𝑈 ) = 𝑉 ) |
25 |
18 24
|
pm2.61dane |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ 𝑈 ≠ 0 ) → ∃ 𝑠 ∈ 𝐸 ( 𝑠 ∘ 𝑈 ) = 𝑉 ) |