Metamath Proof Explorer


Theorem cdlemn7

Description: Part of proof of Lemma N of Crawley p. 121 line 36. (Contributed by NM, 26-Feb-2014)

Ref Expression
Hypotheses cdlemn8.b B = Base K
cdlemn8.l ˙ = K
cdlemn8.a A = Atoms K
cdlemn8.h H = LHyp K
cdlemn8.p P = oc K W
cdlemn8.o O = h T I B
cdlemn8.t T = LTrn K W
cdlemn8.e E = TEndo K W
cdlemn8.u U = DVecH K W
cdlemn8.s + ˙ = + U
cdlemn8.f F = ι h T | h P = Q
cdlemn8.g G = ι h T | h P = R
Assertion cdlemn7 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O G = s F g I T = s

Proof

Step Hyp Ref Expression
1 cdlemn8.b B = Base K
2 cdlemn8.l ˙ = K
3 cdlemn8.a A = Atoms K
4 cdlemn8.h H = LHyp K
5 cdlemn8.p P = oc K W
6 cdlemn8.o O = h T I B
7 cdlemn8.t T = LTrn K W
8 cdlemn8.e E = TEndo K W
9 cdlemn8.u U = DVecH K W
10 cdlemn8.s + ˙ = + U
11 cdlemn8.f F = ι h T | h P = Q
12 cdlemn8.g G = ι h T | h P = R
13 simp33 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O G I T = s F s + ˙ g O
14 simp1 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O K HL W H
15 simp2l K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O Q A ¬ Q ˙ W
16 simp2r K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O R A ¬ R ˙ W
17 simp31 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O s E
18 simp32 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O g T
19 1 2 3 4 5 6 7 8 9 10 11 cdlemn6 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T s F s + ˙ g O = s F g s
20 14 15 16 17 18 19 syl122anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O s F s + ˙ g O = s F g s
21 13 20 eqtrd K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O G I T = s F g s
22 fvex s F V
23 vex g V
24 22 23 coex s F g V
25 vex s V
26 24 25 opth2 G I T = s F g s G = s F g I T = s
27 21 26 sylib K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O G = s F g I T = s