Metamath Proof Explorer


Theorem ceilidz

Description: A real number equals its ceiling iff it is an integer. (Contributed by AV, 30-Nov-2018)

Ref Expression
Assertion ceilidz AAA=A

Proof

Step Hyp Ref Expression
1 ceilid AA=A
2 ceilcl AA
3 eleq1 A=AAA
4 2 3 syl5ibcom AA=AA
5 1 4 impbid2 AAA=A